Prevent simultaneous execution of workflow jobs - jenkins-workflow

When using a SCM trigger, e. g. every two minutes, how can I prevent a simultaneous execution of my job when there are two commits approximately at the same time?

This is requested in JENKINS-26860, which also discusses how the stage step can be used to manage concurrency in certain cases.

Related

will a workflow be executed by multiple workflow workers at the same time?

Under normal circumstances, will a workflow be executed by multiple workflow workers at the same time? Because multiple workflow workers can polldecision tasks to execute, if not, how does he do it?
No it will not.
There is only one pending workflow decision task at a time. When a workflow worker is working on a decision task, Cadence will not schedule another one until the current one completed, failed or timeout.
However, timeout is enforced by server, technically when a decision task timeout the worker is still working on it. But the results will not be accepted afterwards.
It depends on many factors. A workflow can be executed by a single worker if it is short. But it will be executed by many workers if it takes long enough to be pushed out of the worker cache or a worker fails/restarts.
But the same workflow is executed exactly once in all these situations.

Whether the workflow worker in uber-cadence has control of the number of coroutines?

If the workflow executes for a long time (for example, the workflow executes sleep), will a large number of coroutines be generated?
Cadence or Temporal workflow only needs a worker to generate the next steps to execute. When it is blocked waiting for an external event like a timer it doesn't consume any worker resources. So a single worker can process a practically unlimited number of workflows given that it can keep up with their execution rate.
As an optimization workflows are cached on a worker. But any of them can be kicked out of cache at any time without affecting their correctness.

How should I pick ScheduleToStartTimeout and StartToCloseTimeout values for ActivityOptions

There are four different timeout options in the ActivityOptions, and two of those are mandatory without any default values: ScheduleToStartTimeout and StartToCloseTimeout.
What considerations should be made when selecting values for these timeouts?
As mentioned in the question, there are four different timeout options in ActivityOptions, and the differences between them may not be super clear to a new Cadence user. Let’s first briefly explain what those are:
ScheduleToStartTimeout: This configuration specifies the maximum
duration between the time the Activity is scheduled by a workflow and
it’s picked up by an activity worker to start executing it. In other
words, it configures the time a task spends in the queue.
StartToCloseTimeout: This one specifies the maximum time taken by
an activity worker from the time it fetches a task until it reports
the completion of it to the Cadence server.
ScheduleToCloseTimeout: This configuration specifies an end-to-end
timeout duration for an activity from the time it is scheduled by the
workflow until it is completed by an activity worker.
HeartbeatTimeout: If your activity is a heartbeating activity, this
configuration basically specifies the maximum duration the Cadence
server would wait for a heartbeat before assuming the activity worker
has failed.
How to select a proper timeout value
Picking the StartToCloseTimeout is fairly straightforward when you know what it does. Essentially, you should make this long enough so that the activity can complete under normal circumstances. Therefore, you should account for everything that can affect the time taken by an activity worker the latency of your down-stream (ie. services, networking etc.). On the other hand, you should aim to keep this value as small as it’s feasible to make your end-to-end system more responsive. If you can’t make this timeout less than a couple of minutes (ideally 1 minute or less), you should consider using a HeartbeatTimeout config and implement heartbeating in your activity.
ScheduleToCloseTimeout is also easy to understand, but it is more common to face issues caused by picking a less-than-ideal value here. Therefore, it’s important to ensure that a moment to pay some extra attention to this configuration.
Basically, you should consider everything that can create a backlog in the activity task queue. Some common events that contribute to a backlog are:
Reduced worker pool throughput due to deployments, maintenance or
network-related issues.
Down-stream latency spikes that would increase the time it takes to
complete each activity task, which then reduces the throughput of the
worker pool.
A significant spike in the number of workflow instances that schedule
the activity; especially if one of the upstream services is also an
asynchronous queue/stream processor which can create its own backlog
and suddenly start processing it at a very high-volume.
Ideally, no activity should timeout while waiting in the task queue, especially if the queue is backed up and the activity is configured to be retried. Because the retries would add more activity tasks to the queue and subsequently make it harder to recover from backlog or make it even worse. On the other hand, there are many use cases where business requirements really limit the total time the system can take to process an activity. Therefore, it’s usually not a bad idea to aim for a high ScheduleToCloseTimeout value as long as the business requirements allow. Depending on your use case, it might not make sense to keep your activity in the queue for more than a few minutes or it might be perfectly fine to keep it there for several days before timing out.

What queuing tools or algorithms support fair queuing of jobs

I am hitting a well known problem, but I can't find a simple answer that tells me how to solve it.
I would appreciate you directing me by answering which feature I should look for in available queuing software or suitable algorithms if the solution requires programming in addition to the tools. and if you can direct me to Python supported tools, it would be helpful
My problem is that I get over the span of the day jobs which deploy 10, 100 or 1000 tests (I exaggerate , but it helps make a point). Many jobs deploy 10 tests, some deploy 100 tests and one or two deploy 1000 tests.
I want to deploy the tests in such a manner that the delay in execution is spread in a fair manner between all jobs. Let me explain myself.
If the very large job takes 2 hours on a idle server, it would be acceptable if it completes after 4 hours.
If a small job takes 3 minutes on an idle server, it would be acceptable if it completes after 15 minutes.
I want the delay of running the jobs to be spread in a fair way, so jobs that started earlier don't get too delayed. If it looks that the job is going to be delayed more than allowed it's priority will increase.
I think that prioritizing queues may be the solution, so dynamically changing the weights on a large queue will make it faster when needed.
Is there a queue software that knows how to do the above automatically. Lets say that I give each job some time limit and the queue software knows how to prioritize the tests from each queue so that no job is delayed too much?
Thanks.
Adding information following Jim's comments.
Not enough information to supply an answer. Is a job essentially just a list of tests? Can multiple tests for a single job be run concurrently? Do you always run all tests for a job? – Jim Mischel 14 hours ago
Each job deploys between 10 to 1000 tests.
The test can run concurrently to all other tests from the same or other users without conflicts.
All tests that were deploy by a job, are planned to run.
Additional info:
I've learned so far that Prioritized Queues are actually about applying weights to items in a single queue, where items with the hightest are pulled first. If two or more items have the same highest priority, the first item to arrive will be executed first.
When I pondered about Priority Queues it was more in the way of:
Multiple Queues, where each queue has a priority assigned to the entire queue.
The priority can be changed dynamically in runtime, based on some condition, e.g. setting a time limit on the execution of the entire queue.

High Throughput and Windows Workflow Foundation

Can WWF handle high throughput scenarios where several dozen records are 'actively' being processed in parallel at any one time?
We want to build a workflow process which handles a few thousand records per hour. Each record takes up to a minute to process, because it makes external web service calls.
We are testing Windows Workflow Foundation to do this. But our demo programs show processing of each record appear to be running in sequence not in parallel, when we use parallel activities to process several records at once within one workflow instance.
Should we use multiple workflow instances or parallel activities?
Are there any known patterns for high performance WWF processing?
You should definitely use a new workflow per record. Each workflow only gets one thread to run in, so even with a ParallelActivity they'll still be handled sequentially.
I'm not sure about the performance of Windows Workflow, but from what I have heard about .NET 4 at Tech-Ed was that its Workflow components will be dramatically faster then the ones from .NET 3.0 and 3.5. So if you really need a lot of performance, maybe you should consider waiting for .NET 4.0.
Another option could be to consider BizTalk. But it's pretty expensive.
I think the common pattern is to use one workflow instance per record. The workflow runtime runs multiple instances in parallel.
One workflow instance runs one thread at a time. The parallel activity calls Execute method of each activity sequentially on this single thread. You may still get performance improvement from parallel activity however, if the activities are asynchronous and spend most of the time waiting for external process to finish its work. E.g. if activity calls an external web method, and then waits for a reply - it returns from Execute method and does not occupy this thread while waiting for the reply, so another activity in the Parallel group can start its job (e.g. also call to a web service) at the same time.