Caching query results in MongoDB - mongodb

I will be working on a large data set that changes slowly so I want to optimize the query result time by using a caching mechanism. For example , if I want to see some metrics about the data from the last 360 days I don't need to query the database again because I can reuse the last query result.
Does MongoDB natively support caching or do I have to use another database , for example Redis as mentioned here
EDIT : my question is different from Caching repeating query results in MongoDB because I asked about external caching systems and the response in the late question was specific to working with MongoDB and Tornado

The author of the Motor (MOngo + TORnado) package gives an example of caching his list of categories here: http://emptysquare.net/blog/refactoring-tornado-code-with-gen-engine/
Basically, he defines a global list of categories and queries the database to fill it in; then, whenever he need the categories in his pages, he checks the list: if it exists, he uses it, if not, he queries again and fills it in. He has it set up to invalidate the list whenever he inserts to the database, but depending on your usage you could create a global timeout variable to keep track of when you need to re-query next. If you're doing something complicated, this could get out of hand, but if it's just a list of the most recent posts or something, I think it would be fine.

Related

Firestore pagination of multiple queries

In my case, there are 10 fields and all of them need to be searched by "or", that is why I'm using multiple queries and filter common items in client side by using Promise.all().
The problem is that I would like to implement pagination. I don't want to get all the results of each query, which has too much "read" cost. But I can't use .limit() for each query cause what I want is to limit "final result".
For example, I would like to get the first 50 common results in the 10 queries' results, if I do limit(50) to each query, the final result might be less than 50.
Anyone has ideas about pagination for multiple queries?
I believe that the best way for you to achieve that is using query cursors, so you can better manage the data that you retrieve from your searches.
I would recommend you to take a look at the below links, to find out more information - including a question answered by the community, that seems similar to your case.
Paginate data with query cursors
multi query and pagination with
firestore
Let me know if the information helped you!
Not sure it's relevant but I think I'm having a similar problem and have come up with 4 approaches that might be a workaround.
Instead of making 10 queries, fetch all the products matching a single selection filter e.g. category (in my case a customer can only set a single category field). And do all the filtering on the client side. With this approach the app still reads lots of documents at once but at least reuse these during the session time and filter with more flexibility than firestore`s strict rules.
Run multiple queries in a server environment, such as cloud store functions with Node.js and get only the first 50 documents that are matching all the filters. With this approach client only receives wanted data not more, but server still reads a lot.
This is actually your approach combined with accepted answer
Create automated documents in firebase with the help of cloud functions, e.g. Colors: {red:[product1ID,product2ID....], ....} just storing the document IDs and depending on filters get corresponding documents in server side with cloud functions, create a cross product of matching arrays (AND logic) and push first 50 elements of it to the client side. Knowing which products to display client then handle fetching client side library.
Hope these would help. Here is my original post Firestore multiple `in` queries with `and` logic, query structure

Meteor MongoDB Server Aggregation into new Collection

I'm currently experimenting with a test collection on a LAN-accessible MongoDB server and data in a Meteor (v1.6) application. View layer of choice is React and right now I'm using the createContainer to bind the subscriptions to props.
The data that gets put in the MongoDB storage is updated on a daily basis and consists of a big set of data from several SQL databases, netting up to about 60000 lines of JSON per day. The data has been ever-so-slightly reshaped to be turned into a usable format whilst remaining as RAW as I'd like it to be.
The working solution right now is fetching all this data and doing further manipulations client-side to prepare the data for visualization. The issue should seem obvious: each client is fetching a set of documents that grows every day and repeats a lot of work on earlier entries before being ready to display. I want to do this manipulation on the server, through MongoDB's Aggregation Framework.
My initial idea is to do the aggregations on the server and to create new Collections containing smaller, more specific datasets without compromising the RAWness of the original Collection. That would mean the "reduced" Collections can still be reactive, as I've been able to confirm through testing in a Remote Desktop, subscribing to an aggregated Collection which I can update through Robo3T.
I don't know if this would be ideal. As far as storage goes, there's plenty of room for the extra Collections. But I have no idea how to set up an automated aggregation script on said server. And regarding Meteor, I've tried using meteorhacks:aggregate and jcbernack:reactive-aggregate but couldn't figure out how to deal with either one of them. If anyone is dealing, or has dealt with, something similar; I'd love to hear ideas / suggestions.

Is dynamically creating and dropping collections in MongoDB going to create scalability issues?

I have an application (built in Meteor) that provides some ad hoc reporting capabilities to the end user. I have built up that functionality by using the aggregation pipeline to produce the results for a given query. This makes it extremely fast and I was using $out to push the results right into a results table.
The results table included a queryID, which the client used to figure out which were the correct results.
Unfortunately, as you may know (and I discovered), that doesn't work so well once you have more than one user running reports at a time because $out deletes the whole results table before pushing the new query in.
I see three possible workarounds:
Run the aggregation, but manually push the results into the results collection
$out the results into a temporary collection (dynamically named to avoid conflicts) and then manually copy the results from there into results collection, immediately dropping the temporary one. This made some sense when I thought I could use copyTo(), but that doesn't appear possible within Meteor, so I think this option doesn't make much sense relative to #1 in this case.
$out the results into a temporary collection (dynamically named to avoid conflicts) and have the client pull its results directly from there. I would then periodically drop the extra collections after say 24 hours (like I do with specific query results in the main collection today).
#3 would be the fastest by far - the time it takes to manually copy rows dwarfs the time it takes the queries to run. But I'm concerned about the impact of creating and dropping so many collections.
We're not talking millions of users here, but if an average of 500 users a day were each running 10-20 reports, there could be an additional 5-10k collections in the database at any one time. That seems like a lot. Perhaps I could be smarter about cleaning them up somehow, though I can't just immediately remove them because a user might want to have multiple tabs open with different reports. Even still, we're potentially talking about hundreds to thousands of collections.
Is that going to be a problem?
Are there other approaches I should consider instead?
Other recommendations?
Thanks!
Dropping a collection in mongoDB is very efficient operation, anyway much more efficient than deleting some documents in a larger collection.
Maximum number of collections is quite high, only limited by namespace namespace in MMAPv1 while no hard limit exists in wiretiger engine.
So I would favor your solution #3.
Some improvements/alternatives you can think:
Consider creating the collections in a separated database (say per day) then you can drop the entire database in a single operation without having to drop individual collections.
Use an endpoint for the result set, cash the results then drop the $out collection. Let cache handle user requirements and only rerun the aggregation if cache has expired or something.
This kind of activity is done very easily in relational databases such as mysql or pgsql. You might consider synchronising your data to a separate relational database for the purposes of reporting.
There is a package https://github.com/perak/mysql-shadow which claims to provide synchronisation. I played with it and it didn't work perfectly, although doing just one way sync is more likely to succeed.
The other option is to use Graphql over a mongo/mysql hybrid database which can be done with the Apollo stack http://www.apollodata.com/

MongoDB. Use cursor as value for $in in next query

Is there a way to use the cursor returned by the previous query as a value for $in in the next query? For example, something like this:
var users = db.user.find({state:1})
var offers = db.offer.find({user:{$in:users}})
I think this can reduce the traffic between mongodb and client in case the client doesn't need user information at all, just offers. Am i wrong?
Basically you want to do a join between two collections which Mongo doesn't support. You can reduce the amount of data being transferred from the server by limiting the fields returned from the first query to only the unique user information (i.e. the _id) that you need to get data from the offers collection.
If you really just want to make one query then you should store more information in the offers collection. For example, if you're trying to find offers for active users then you would store the active state of the user in the offers collection.
To work from your comment:
Yes, that's why I used tag 'join' in a question. The idea is that I
can make a first query more сomplex using a bunch of fields and
regexes without storing user data in other collections except
references. In these cases I always have to perform two consecutive
queries, but transfering of the results of the first query is not
necessary neither for me nor for the mongodb itself. I just want to
understand could it be done now, will it be possible to do so in the
future or it cannot be implemented for some technical reasons
As far as I understand it there is no immediate hurry to make this possible. Also the way it is coded atm will make this quite a big change to the way cursors work and are defined. A change big enough to possibly cause implementation breaks for other people. It is really a case of whether to set safe for inserts and updates for all future drivers. It is recognised that safe should be default but this will break implementation for other people who expect it the other way around.
It is rather inefficient if you don't require the results of the first query at all however since most networks are prepped with high traffic in mind and the traffic is cheap there hasn't been a demand to make it able to do chained queries server side in the cursor.
However subselects (which this basically is, it is selecting a set of rows based upon a sub selection of previous rows) have been on mongodb-user a couple of times and there might even be a JIRA for it somewhere, if not might be useful to make one.
As for doing it right now: there is no way.

Best practices for combining Lucene.NET and a relational database?

I'm working on a project where I will have a LOT of data, and it will be searchable by several forms that are very efficiently expressed as SQL Queries, but it also needs to be searched via natural language processing.
My plan is to build an index using Lucene for this form of search.
My question is that if I do this, and perform a search, Lucene will then return the ID's of matching documents in the index, I then have to lookup these entities from the relational database.
This could be done in two ways (That I can think of so far):
N amount of queries (Horrible)
Pass all the ID's to a stored procedure at once (Perhaps as a comma delimited parameter). This has the downside of being limited to the max parameter size, and the slow performance of a UDF to split the string into a temporary table.
I'm almost tempted to mirror everything into lucenes index, so that I can periodicly generate the index from the backing store, but only need to access it for the frontend.
Advice?
I would store the 'frontend' data inside the index itself, avoiding any db interaction. The db would be queried only when you want more information on the specific record.
When I encountered this problem I went with a relational database that has full-text search capabilities (I used PostgreSQL 8.3, which has built in ft support, with stemming and thesaurus support). This way the database can query using both SQL and ft commands. The downside is that you need a DB that has full-text-search capabilities, and these capabilities might be inferior to what lucene can do.
I guess the answer depends on what you are going to do with the results, if you are going to display the results in a grid and let the user choose the exact document he wants to access then you may want to add to the index enough text to help the user identify the document, like a blurb of say 200 characters and then once the member selects a document hit the DB to retrieve the whole thing.
This will impact the size of your index for sure, so that is another consideration you need to keep in mind. I would also put a cache between the DB and the front end so that the most used items will not incur the full cost of a DB access every time.
Probably not an option depending on how much stuff is in your database, but what I have done is store the db id's in the search index along with the properties I wanted indexed. Then in my service classes I cache all the data needed to display search results for all the objects (e.g., name, db id, image url's, description blurbs, social media info). The service class returns a Dictionary that can look up objects by db id, and I use the id's returned by Lucene.NET to pull data from the in-memory cache.
You could also forego the in-memory cache and store all the necessary properties for displaying a search result in the search index. I didn't do this because the in-memory cache is also used in scenarios other than search.
The in-memory cache is always fresh to within a few hours, and the only time I have to hit the db is if I need to pull more detailed data for a single object (if the user clicks on the link for a specific object to go to the page for that object).