I'm new to Azure Databricks and I'm trying implement an Azure Databricks Delta Live Table Pipeline that ingests from a Kafka topic containing messages where the values are SchemaRegistry encoded AVRO.
Work done so far...
Exercise to Consume and Write to a Delta Table
Using the example in Confluent Example, I've read the "raw" message via:
rawAvroDf = (
spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", confluentBootstrapServers)
.option("kafka.security.protocol", "SASL_SSL")
.option("kafka.sasl.jaas.config", "kafkashaded.org.apache.kafka.common.security.plain.PlainLoginModule required username='{}' password='{}';".format(confluentApiKey, confluentSecret))
.option("kafka.ssl.endpoint.identification.algorithm", "https")
.option("kafka.sasl.mechanism", "PLAIN")
.option("subscribe", confluentTopicName)
.option("startingOffsets", "earliest")
.option("failOnDataLoss", "false")
.load()
.withColumn('key', fn.col("key").cast(StringType()))
.withColumn('fixedValue', fn.expr("substring(value, 6, length(value)-5)"))
.withColumn('valueSchemaId', binary_to_string(fn.expr("substring(value, 2, 4)")))
.select('topic', 'partition', 'offset', 'timestamp', 'timestampType', 'key', 'valueSchemaId','fixedValue')
)
Created a SchemaRegistryClient:
from confluent_kafka.schema_registry import SchemaRegistryClient
import ssl
schema_registry_conf = {
'url': schemaRegistryUrl,
'basic.auth.user.info': '{}:{}'.format(confluentRegistryApiKey, confluentRegistrySecret)}
schema_registry_client = SchemaRegistryClient(schema_registry_conf)
Defined a deserialization function that looks up the schema ID from the start of the binary message:
import pyspark.sql.functions as fn
from pyspark.sql.avro.functions import from_avro
def parseAvroDataWithSchemaId(df, ephoch_id):
cachedDf = df.cache()
fromAvroOptions = {"mode":"FAILFAST"}
def getSchema(id):
return str(schema_registry_client.get_schema(id).schema_str)
distinctValueSchemaIdDF = cachedDf.select(fn.col('valueSchemaId').cast('integer')).distinct()
for valueRow in distinctValueSchemaIdDF.collect():
currentValueSchemaId = sc.broadcast(valueRow.valueSchemaId)
currentValueSchema = sc.broadcast(getSchema(currentValueSchemaId.value))
filterValueDF = cachedDf.filter(fn.col('valueSchemaId') == currentValueSchemaId.value)
filterValueDF \
.select('topic', 'partition', 'offset', 'timestamp', 'timestampType', 'key', from_avro('fixedValue', currentValueSchema.value, fromAvroOptions).alias('parsedValue')) \
.write \
.format("delta") \
.mode("append") \
.option("mergeSchema", "true") \
.save(deltaTablePath)
Finally written to a delta table:
rawAvroDf.writeStream \
.option("checkpointLocation", checkpointPath) \
.foreachBatch(parseAvroDataWithSchemaId) \
.queryName("clickStreamTestFromConfluent") \
.start()
Created a (Bronze/Landing) Delta Live Table
import dlt
import pyspark.sql.functions as fn
from pyspark.sql.types import StringType
#dlt.table(
name = "<<landingTable>>",
path = "<<storage path>>",
comment = "<< descriptive comment>>"
)
def landingTable():
jasConfig = "kafkashaded.org.apache.kafka.common.security.plain.PlainLoginModule required username='{}' password='{}';".format(confluentApiKey, confluentSecret)
binary_to_string = fn.udf(lambda x: str(int.from_bytes(x, byteorder='big')), StringType())
kafkaOptions = {
"kafka.bootstrap.servers": confluentBootstrapServers,
"kafka.security.protocol": "SASL_SSL",
"kafka.sasl.jaas.config": jasConfig,
"kafka.ssl.endpoint.identification.algorithm": "https",
"kafka.sasl.mechanism": "PLAIN",
"subscribe": confluentTopicName,
"startingOffsets": "earliest",
"failOnDataLoss": "false"
}
return (
spark
.readStream
.format("kafka")
.options(**kafkaOptions)
.load()
.withColumn('key', fn.col("key").cast(StringType()))
.withColumn('valueSchemaId', binary_to_string(fn.expr("substring(value, 2, 4)")))
.withColumn('avroValue', fn.expr("substring(value, 6, length(value)-5)"))
.select(
'topic',
'partition',
'offset',
'timestamp',
'timestampType',
'key',
'valueSchemaId',
'avroValue'
)
Help Required on:
Ensure that the landing table is a STREAMING LIVE TABLE
Deserialize the avro encode message-value (a STREAMING LIVE VIEW calling a python UDF?)
Related
i'm trying to read stream from Kafka topic using spark streaming/python, I can read the message and dump it to a bronze table with default kafka message schema, but i cannot cast the key and values from binary to string, I've tried the following approach, none of them worked:
approach 1:
raw_kafka_events = (spark.readStream
.format("kafka")
.option("subscribe", TOPIC)
.option("kafka.bootstrap.servers", KAFKA_BROKER)
.option("startingOffsets", "earliest")
.option("kafka.security.protocol", "SSL") \
.option("kafka.ssl.truststore.location", SSL_TRUST_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.location", SSL_KEY_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.password", SSL_KEY_STORE_PASSWORD) \
.option("kafka.ssl.truststore.password", SSL_TRUST_STORE_PASSWORD) \
.option("kafka.ssl.key.password", SSL_KEY_PASSWORD) \
.option("kafka.ssl.keystore.type", "JKS") \
.option("kafka.ssl.truststore.type", "JKS") \
.option("failOnDataLoss", "false") \
.load()).selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
#dlt.table(
comment="the raw message from kafa topic",
table_properties={"pipelines.reset.allowed":"false"}
)
def kafka_bronze():
return raw_kafka_events
error:
Failed to merge fields 'key' and 'key'. Failed to merge incompatible data types BinaryType and StringType
approach 2:
raw_kafka_events = (spark.readStream
.format("kafka")
.option("subscribe", TOPIC)
.option("kafka.bootstrap.servers", KAFKA_BROKER)
.option("startingOffsets", "earliest")
.option("kafka.security.protocol", "SSL") \
.option("kafka.ssl.truststore.location", SSL_TRUST_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.location", SSL_KEY_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.password", SSL_KEY_STORE_PASSWORD) \
.option("kafka.ssl.truststore.password", SSL_TRUST_STORE_PASSWORD) \
.option("kafka.ssl.key.password", SSL_KEY_PASSWORD) \
.option("kafka.ssl.keystore.type", "JKS") \
.option("kafka.ssl.truststore.type", "JKS") \
.option("failOnDataLoss", "false") \
.load())
raw_kafka_events.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
#dlt.table(
comment="the raw message from kafa topic",
table_properties={"pipelines.reset.allowed":"false"}
)
def kafka_bronze():
return raw_kafka_events
No error message, but later when i checked the table kafka_bronze, it showed the column key and value are still binary format
approach 3: added kafka_silver table:
raw_kafka_events = (spark.readStream
.format("kafka")
.option("subscribe", TOPIC)
.option("kafka.bootstrap.servers", KAFKA_BROKER)
.option("startingOffsets", "earliest")
.option("kafka.security.protocol", "SSL") \
.option("kafka.ssl.truststore.location", SSL_TRUST_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.location", SSL_KEY_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.password", SSL_KEY_STORE_PASSWORD) \
.option("kafka.ssl.truststore.password", SSL_TRUST_STORE_PASSWORD) \
.option("kafka.ssl.key.password", SSL_KEY_PASSWORD) \
.option("kafka.ssl.keystore.type", "JKS") \
.option("kafka.ssl.truststore.type", "JKS") \
.option("failOnDataLoss", "false") \
.load())
#dlt.table(
comment="the raw message from kafa topic",
table_properties={"pipelines.reset.allowed":"false"}
)
def kafka_bronze():
return raw_kafka_events
#dlt.table(comment="real schema for kafka payload",
temporary=False)
def kafka_silver():
return (
# kafka streams are (timestamp,value)
# value contains the kafka payload
dlt.read_stream("kafka_bronze")
.select(col("key").cast("string"))
.select(col("value").cast("string"))
)
error:
Column 'value' does not exist.
How can I cast the key/value to string after reading them from kafka topic? i'd prefer to dump the string valued key/value to bronze table, but it's impossible, i can dump them to silver table too
First, it's recommended to define that raw_kafka_events variable inside the function, so it will be local to that function.
In the second approach your problem is that you just do raw_kafka_events.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") without assingning it to the variable, like this: raw_kafka_events = raw_kafka_events.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)").
Second problem is that when you use expressions like CAST(key AS STRING), then fields get a new name, matching this expression. Change it to CAST(key AS STRING) as key, and CAST(value AS STRING) as value - this should fix the 1st problem.
In the second approach, you have a select statements chained:
def kafka_silver():
return (
# kafka streams are (timestamp,value)
# value contains the kafka payload
dlt.read_stream("kafka_bronze")
.select(col("key").cast("string"))
.select(col("value").cast("string"))
)
but after your first select you will get a dataframe only with one column - key. You need to change code to:
dlt.read_stream("kafka_bronze") \
.select(col("key").cast("string").alias("key"),
col("value").cast("string").alias("value"))
I am trying to Integrate Kafka with Spark-Structured-Streaming in PySpark to MongoDB Sink. I need help on correcting my code if i am going wrong
Got integrated Kafka-PySpark and PySpark-Mongo. Now trying to integrate the pipeline from Kafka-PySpark-Mongo
I'm using pyspark 2.4.5.
This is my code:
spark = SparkSession.builder \
.appName("Spark Structured Streaming from Kafka") \
.getOrCreate()
topic_name = "Be_"
kafka_broker = "localhost:9092"
producer = KafkaProducer(bootstrap_servers = kafka_broker)
jsonschema = StructType([ \
StructField("id", StringType()), StructField("Date", StringType()), \
StructField("Name", StringType()), StructField("Hour", StringType()), \
StructField("Last_Price", FloatType()), StructField("Var%", FloatType()), \
StructField("Last_Value", FloatType()), StructField("TYpe", StringType())])
df = spark.readStream.format("kafka") \
.option("kafka.bootstrap.servers", kafka_broker) \
.option("startingOffsets", "latest") \
.option("subscribe", topic_name) \
.load() \
.selectExpr("CAST(value AS STRING)")
def parse_data_from_kafka_message(sdf, schema):
from pyspark.sql.functions import split
assert sdf.isStreaming == True, "DataFrame doesn't receive streaming data"
col = split(sdf['value'], ',') #split attributes to nested array in one Column
#now expand col to multiple top-level columns
for idx, field in enumerate(schema):
sdf = sdf.withColumn(field.name, col.getItem(idx).cast(field.dataType))
return sdf.select([field.name for field in schema])
df= parse_data_from_kafka_message(df, jsonschema)
df \
.writeStream \
.format("mongo") \
.option("com.mongodb.spark.sql.DefaultSource","mongodb://localhost:27017/DataManagement.Data") \
.outputMode("append") \
.start() \
.awaitTermination()
This is the error that comes out in console:
I get this error from the console:
Py4JJavaError: An error occurred while calling o263.start.
: java.lang.UnsupportedOperationException: Data source mongo does not support streamed writing
I also tried using the ForeachWriter:
class ForeachWriter:
def open (self, partition_id, epoch_id):
# Open connection. This method is optional in Python.
self.connection = MongoClient ('mongodb: // localhost: 27017')
self.db = self.connection ['DataManagement']
self.coll = self.db ['Data']
pass
def process (self, row):
# Write row to connection. This method is NOT optional in Python.
# Self.coll = None
self.coll.insert_one (row.asDict ())
pass
def close (self, error):
# Close the connection. This method in optional in Python.
pass
df \
.writeStream \
.foreach (ForeachWriter ()) \
.trigger (processingTime = '3 seconds') \
.outputMode ("Append") \
.option ("truncate", "false") \
.start ()
Unfortunately the mongodb sink doesn't work either way and I'd like to know if there is another way to send data to MongoDB using PySpark or if I'm doing something wrong in the code. Thank you very much
I'm trying to write a dataframe to kafka in JSON format and add a key to the data frame in Scala, i'm currently working with this sample from the kafka-spark:
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.save()
Is there a to_json method that can be used (instead of the json(path) option which I believe writes out to a file in JSON format) and is there a key option that can be used to replace the null value with an actual key.
This is a minimal example in scala. Let's say you have a dataframe df with columns x and y. Here's a minimal example:
val dataDS = df
.select(
$"x".cast(StringType),
$"y".cast(StringType)
)
.toJSON
.withColumn("key", lit("keyname"))
dataDS
.write
.format("kafka")
.option("kafka.bootstrap.servers", "servername:port")
.option("topic", "topicname")
.save()
Remember you need the spark-sql-kafka library: e.g. for spark-shell is loaded with
spark-shell --packages "org.apache.spark:spark-sql-kafka-0-10_2.12:3.0.1"
You can make use of the to_json SQL function to convert your columns into a JSON.
See Scala code below which is also making use of the Spark SQL built-in function struct in Spark version 2.4.5. Just make sure that your are naming your columns as key and value or applying corresponding aliases in your selectExpr.
import org.apache.spark.sql.functions.{col, struct, to_json}
import org.apache.spark.sql.SparkSession
object Main extends App {
val spark = SparkSession.builder()
.appName("myAppName")
.master("local[*]")
.getOrCreate()
// create DataFrame
import spark.implicits._
val df = Seq((3, "Alice"), (5, "Bob")).toDF("age", "name")
df.show(false)
// convert columns into json string
val df2 = df.select(col("name"),to_json(struct($"*"))).toDF("key", "value")
df2.show(false)
// +-----+------------------------+
// |key |value |
// +-----+------------------------+
// |Alice|{"age":3,"name":"Alice"}|
// |Bob |{"age":5,"name":"Bob"} |
// +-----+------------------------+
// write to Kafka with jsonString as value
df2.selectExpr("key", "value")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("topic", "test-topic")
.save()
}
This will return the following data into your Kafka topic:
kafka-console-consumer --bootstrap-server localhost:9092 --property print.key=true --property print.value=true --topic test-topic
Alice {"age":3,"name":"Alice"}
Bob {"age":5,"name":"Bob"}
You can use toJSON() method on dataframe to convert your record to json message.
df = spark.createDataFrame([('user_first_name','user_last_nmae',100)], ['first_name','last_name','ID'])
import json
from datetime import datetime
from pyspark.sql.functions import lit
json_df = json.loads(df.withColumn('date_as_key', lit(datetime.now().date())).toJSON().first())
print json_df
{u'date_as_key': u'2019-07-29', u'first_name': u'user_first_name', u'last_name': u'user_last_nmae', u'ID': 100}
Your code may be like this
from pyspark.sql.functions import lit
df.withColumn('key', lit(datetime.now())).toJSON()
.write
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.save()
Scala:
import org.apache.spark.sql.Column;
someDF.withColumn("key",lit("name")).show() // replace "name" with your variable
someDF.withColumn("key",lit("name")).toJSON.first() // toJSON is available as variable on dataframe in Scala
someDF.withColumn("key",lit("name")).toJSON.first()
res5: String = {"number":8,"word":"bat","key":"name"}
I am using pyspark for the first time.
Spark Version : 2.3.0
Kafka Version : 2.2.0
I have a kafka producer which sends nested data in avro format and I am trying to write code in spark-streaming/ structured streaming in pyspark which will deserialize the avro coming from kafka into dataframe do transformations write it in parquet format into s3.
I was able to find avro converters in spark/scala but support in pyspark has not yet been added. How do I convert the same in pyspark.
Thanks.
As like you mentioned , Reading Avro message from Kafka and parsing through pyspark, don't have direct libraries for the same . But we can read/parsing Avro message by writing small wrapper and call that function as UDF in your pyspark streaming code as below .
Reference :
Pyspark 2.4.0, read avro from kafka with read stream - Python
Note: Avro is built-in but external data source module since Spark 2.4. Please deploy the application as per the deployment section of "Apache Avro Data Source Guide".
Refererence: https://spark-test.github.io/pyspark-coverage-site/pyspark_sql_avro_functions_py.html
Spark-Submit :
[adjust the package versions to match spark/avro version based installation]
/usr/hdp/2.6.1.0-129/spark2/bin/pyspark --packages org.apache.spark:spark-avro_2.11:2.4.3 --conf spark.ui.port=4064
Pyspark Streaming Code:
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
from pyspark.streaming import StreamingContext
from pyspark.sql.column import Column, _to_java_column
from pyspark.sql.functions import col, struct
from pyspark.sql.functions import udf
import json
import csv
import time
import os
# Spark Streaming context :
spark = SparkSession.builder.appName('streamingdata').getOrCreate()
sc = spark.sparkContext
ssc = StreamingContext(sc, 20)
# Kafka Topic Details :
KAFKA_TOPIC_NAME_CONS = "topicname"
KAFKA_OUTPUT_TOPIC_NAME_CONS = "topic_to_hdfs"
KAFKA_BOOTSTRAP_SERVERS_CONS = 'localhost.com:9093'
# Creating readstream DataFrame :
df = spark.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", KAFKA_BOOTSTRAP_SERVERS_CONS) \
.option("subscribe", KAFKA_TOPIC_NAME_CONS) \
.option("startingOffsets", "latest") \
.option("failOnDataLoss" ,"false")\
.option("kafka.security.protocol","SASL_SSL")\
.option("kafka.client.id" ,"MCI-CIL")\
.option("kafka.sasl.kerberos.service.name","kafka")\
.option("kafka.ssl.truststore.location", "/path/kafka_trust.jks") \
.option("kafka.ssl.truststore.password", "changeit") \
.option("kafka.sasl.kerberos.keytab","/path/bdpda.headless.keytab") \
.option("kafka.sasl.kerberos.principal","bdpda") \
.load()
df1 = df.selectExpr( "CAST(value AS STRING)")
df1.registerTempTable("test")
# Deserilzing the Avro code function
from pyspark.sql.column import Column, _to_java_column
def from_avro(col):
jsonFormatSchema = """
{
"type": "record",
"name": "struct",
"fields": [
{"name": "col1", "type": "long"},
{"name": "col2", "type": "string"}
]
}"""
sc = SparkContext._active_spark_context
avro = sc._jvm.org.apache.spark.sql.avro
f = getattr(getattr(avro, "package$"), "MODULE$").from_avro
return Column(f(_to_java_column(col), jsonFormatSchema))
spark.udf.register("JsonformatterWithPython", from_avro)
squared_udf = udf(from_avro)
df1 = spark.table("test")
df2 = df1.select(squared_udf("value"))
# Declaring the Readstream Schema DataFrame :
df2.coalesce(1).writeStream \
.format("parquet") \
.option("checkpointLocation","/path/chk31") \
.outputMode("append") \
.start("/path/stream/tgt31")
ssc.awaitTermination()
I'm using spark 2.3.2 with pyspark and just figured out that foreach and foreachBatch are not available in 'DataStreamWriter' object in this configuration. The problem is the company Hadoop is 2.6 and spark 2.4(that provides what I need) doesn't work(SparkSession is crashing). There is some another alternative to send data to a custom handler and process streaming data?
This is my code until now:
def streamLoad(self,customHandler):
options = self.options
self.logger.info("Recuperando o schema baseado na estrutura do JSON")
jsonStrings = ['{"sku":"9","ean":"4","name":"DVD","description":"foo description","categories":[{"code":"M02_BLURAY_E_DVD_PLAYER"}],"attributes":[{"name":"attrTeste","value":"Teste"}]}']
myRDD = self.spark.sparkContext.parallelize(jsonStrings)
jsonSchema = self.spark.read.json(myRDD).schema # Maybe there is a way to serialize this
self.logger.info("Iniciando o streaming no Kafka[opções: {}]".format(str(options)))
df = self.spark \
.readStream \
.format("kafka") \
.option("maxFilesPerTrigger", 1) \
.option("kafka.bootstrap.servers", options["kafka.bootstrap.servers"]) \
.option("startingOffsets", options["startingOffsets"]) \
.option("subscribe", options["subscribe"]) \
.option("failOnDataLoss", options["failOnDataLoss"]) \
.load() \
.select(
col('value').cast("string").alias('json'),
col('key').cast("string").alias('kafka_key'),
col("timestamp").cast("string").alias('kafka_timestamp')
) \
.withColumn('pjson', from_json(col('json'), jsonSchema)).drop('json')
query = df \
.writeStream \
.foreach(customHandler) \ #This doesn't work in spark 2.3.x Alternatives, please?
.start()
query.awaitTermination()