i'm trying to read stream from Kafka topic using spark streaming/python, I can read the message and dump it to a bronze table with default kafka message schema, but i cannot cast the key and values from binary to string, I've tried the following approach, none of them worked:
approach 1:
raw_kafka_events = (spark.readStream
.format("kafka")
.option("subscribe", TOPIC)
.option("kafka.bootstrap.servers", KAFKA_BROKER)
.option("startingOffsets", "earliest")
.option("kafka.security.protocol", "SSL") \
.option("kafka.ssl.truststore.location", SSL_TRUST_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.location", SSL_KEY_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.password", SSL_KEY_STORE_PASSWORD) \
.option("kafka.ssl.truststore.password", SSL_TRUST_STORE_PASSWORD) \
.option("kafka.ssl.key.password", SSL_KEY_PASSWORD) \
.option("kafka.ssl.keystore.type", "JKS") \
.option("kafka.ssl.truststore.type", "JKS") \
.option("failOnDataLoss", "false") \
.load()).selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
#dlt.table(
comment="the raw message from kafa topic",
table_properties={"pipelines.reset.allowed":"false"}
)
def kafka_bronze():
return raw_kafka_events
error:
Failed to merge fields 'key' and 'key'. Failed to merge incompatible data types BinaryType and StringType
approach 2:
raw_kafka_events = (spark.readStream
.format("kafka")
.option("subscribe", TOPIC)
.option("kafka.bootstrap.servers", KAFKA_BROKER)
.option("startingOffsets", "earliest")
.option("kafka.security.protocol", "SSL") \
.option("kafka.ssl.truststore.location", SSL_TRUST_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.location", SSL_KEY_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.password", SSL_KEY_STORE_PASSWORD) \
.option("kafka.ssl.truststore.password", SSL_TRUST_STORE_PASSWORD) \
.option("kafka.ssl.key.password", SSL_KEY_PASSWORD) \
.option("kafka.ssl.keystore.type", "JKS") \
.option("kafka.ssl.truststore.type", "JKS") \
.option("failOnDataLoss", "false") \
.load())
raw_kafka_events.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
#dlt.table(
comment="the raw message from kafa topic",
table_properties={"pipelines.reset.allowed":"false"}
)
def kafka_bronze():
return raw_kafka_events
No error message, but later when i checked the table kafka_bronze, it showed the column key and value are still binary format
approach 3: added kafka_silver table:
raw_kafka_events = (spark.readStream
.format("kafka")
.option("subscribe", TOPIC)
.option("kafka.bootstrap.servers", KAFKA_BROKER)
.option("startingOffsets", "earliest")
.option("kafka.security.protocol", "SSL") \
.option("kafka.ssl.truststore.location", SSL_TRUST_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.location", SSL_KEY_STORE_FILE_LOCATION) \
.option("kafka.ssl.keystore.password", SSL_KEY_STORE_PASSWORD) \
.option("kafka.ssl.truststore.password", SSL_TRUST_STORE_PASSWORD) \
.option("kafka.ssl.key.password", SSL_KEY_PASSWORD) \
.option("kafka.ssl.keystore.type", "JKS") \
.option("kafka.ssl.truststore.type", "JKS") \
.option("failOnDataLoss", "false") \
.load())
#dlt.table(
comment="the raw message from kafa topic",
table_properties={"pipelines.reset.allowed":"false"}
)
def kafka_bronze():
return raw_kafka_events
#dlt.table(comment="real schema for kafka payload",
temporary=False)
def kafka_silver():
return (
# kafka streams are (timestamp,value)
# value contains the kafka payload
dlt.read_stream("kafka_bronze")
.select(col("key").cast("string"))
.select(col("value").cast("string"))
)
error:
Column 'value' does not exist.
How can I cast the key/value to string after reading them from kafka topic? i'd prefer to dump the string valued key/value to bronze table, but it's impossible, i can dump them to silver table too
First, it's recommended to define that raw_kafka_events variable inside the function, so it will be local to that function.
In the second approach your problem is that you just do raw_kafka_events.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") without assingning it to the variable, like this: raw_kafka_events = raw_kafka_events.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)").
Second problem is that when you use expressions like CAST(key AS STRING), then fields get a new name, matching this expression. Change it to CAST(key AS STRING) as key, and CAST(value AS STRING) as value - this should fix the 1st problem.
In the second approach, you have a select statements chained:
def kafka_silver():
return (
# kafka streams are (timestamp,value)
# value contains the kafka payload
dlt.read_stream("kafka_bronze")
.select(col("key").cast("string"))
.select(col("value").cast("string"))
)
but after your first select you will get a dataframe only with one column - key. You need to change code to:
dlt.read_stream("kafka_bronze") \
.select(col("key").cast("string").alias("key"),
col("value").cast("string").alias("value"))
Related
I'm new to Azure Databricks and I'm trying implement an Azure Databricks Delta Live Table Pipeline that ingests from a Kafka topic containing messages where the values are SchemaRegistry encoded AVRO.
Work done so far...
Exercise to Consume and Write to a Delta Table
Using the example in Confluent Example, I've read the "raw" message via:
rawAvroDf = (
spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", confluentBootstrapServers)
.option("kafka.security.protocol", "SASL_SSL")
.option("kafka.sasl.jaas.config", "kafkashaded.org.apache.kafka.common.security.plain.PlainLoginModule required username='{}' password='{}';".format(confluentApiKey, confluentSecret))
.option("kafka.ssl.endpoint.identification.algorithm", "https")
.option("kafka.sasl.mechanism", "PLAIN")
.option("subscribe", confluentTopicName)
.option("startingOffsets", "earliest")
.option("failOnDataLoss", "false")
.load()
.withColumn('key', fn.col("key").cast(StringType()))
.withColumn('fixedValue', fn.expr("substring(value, 6, length(value)-5)"))
.withColumn('valueSchemaId', binary_to_string(fn.expr("substring(value, 2, 4)")))
.select('topic', 'partition', 'offset', 'timestamp', 'timestampType', 'key', 'valueSchemaId','fixedValue')
)
Created a SchemaRegistryClient:
from confluent_kafka.schema_registry import SchemaRegistryClient
import ssl
schema_registry_conf = {
'url': schemaRegistryUrl,
'basic.auth.user.info': '{}:{}'.format(confluentRegistryApiKey, confluentRegistrySecret)}
schema_registry_client = SchemaRegistryClient(schema_registry_conf)
Defined a deserialization function that looks up the schema ID from the start of the binary message:
import pyspark.sql.functions as fn
from pyspark.sql.avro.functions import from_avro
def parseAvroDataWithSchemaId(df, ephoch_id):
cachedDf = df.cache()
fromAvroOptions = {"mode":"FAILFAST"}
def getSchema(id):
return str(schema_registry_client.get_schema(id).schema_str)
distinctValueSchemaIdDF = cachedDf.select(fn.col('valueSchemaId').cast('integer')).distinct()
for valueRow in distinctValueSchemaIdDF.collect():
currentValueSchemaId = sc.broadcast(valueRow.valueSchemaId)
currentValueSchema = sc.broadcast(getSchema(currentValueSchemaId.value))
filterValueDF = cachedDf.filter(fn.col('valueSchemaId') == currentValueSchemaId.value)
filterValueDF \
.select('topic', 'partition', 'offset', 'timestamp', 'timestampType', 'key', from_avro('fixedValue', currentValueSchema.value, fromAvroOptions).alias('parsedValue')) \
.write \
.format("delta") \
.mode("append") \
.option("mergeSchema", "true") \
.save(deltaTablePath)
Finally written to a delta table:
rawAvroDf.writeStream \
.option("checkpointLocation", checkpointPath) \
.foreachBatch(parseAvroDataWithSchemaId) \
.queryName("clickStreamTestFromConfluent") \
.start()
Created a (Bronze/Landing) Delta Live Table
import dlt
import pyspark.sql.functions as fn
from pyspark.sql.types import StringType
#dlt.table(
name = "<<landingTable>>",
path = "<<storage path>>",
comment = "<< descriptive comment>>"
)
def landingTable():
jasConfig = "kafkashaded.org.apache.kafka.common.security.plain.PlainLoginModule required username='{}' password='{}';".format(confluentApiKey, confluentSecret)
binary_to_string = fn.udf(lambda x: str(int.from_bytes(x, byteorder='big')), StringType())
kafkaOptions = {
"kafka.bootstrap.servers": confluentBootstrapServers,
"kafka.security.protocol": "SASL_SSL",
"kafka.sasl.jaas.config": jasConfig,
"kafka.ssl.endpoint.identification.algorithm": "https",
"kafka.sasl.mechanism": "PLAIN",
"subscribe": confluentTopicName,
"startingOffsets": "earliest",
"failOnDataLoss": "false"
}
return (
spark
.readStream
.format("kafka")
.options(**kafkaOptions)
.load()
.withColumn('key', fn.col("key").cast(StringType()))
.withColumn('valueSchemaId', binary_to_string(fn.expr("substring(value, 2, 4)")))
.withColumn('avroValue', fn.expr("substring(value, 6, length(value)-5)"))
.select(
'topic',
'partition',
'offset',
'timestamp',
'timestampType',
'key',
'valueSchemaId',
'avroValue'
)
Help Required on:
Ensure that the landing table is a STREAMING LIVE TABLE
Deserialize the avro encode message-value (a STREAMING LIVE VIEW calling a python UDF?)
I am working on a structured streaming program. I have below code
def dataload(sparkSession):
df = sparkSession.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("subscribe", "bar") \
.option("startingOffsets", "earliest") \
.load()
return df
if __name__ == '__main__':
sparkSession = createSparkSession()
df = dataload(sparkSession)
df.select("value").foreach(lambda bytebuffer: processFrame(bytebuffer=bytebuffer.value)).groupBy(window("timestamp","10 minutes","10 minutes"),"key").count() \
.writeStream \
.queryName("qraw") \
.outputMode("append")\
.format("console") \
.start().awaitTermination()
With above code I keep getting the error
pyspark.sql.utils.AnalysisException: Queries with streaming sources must be executed with writeStream.start();
kafka
I do not know where is the error
I'm using spark 2.3.2 with pyspark and just figured out that foreach and foreachBatch are not available in 'DataStreamWriter' object in this configuration. The problem is the company Hadoop is 2.6 and spark 2.4(that provides what I need) doesn't work(SparkSession is crashing). There is some another alternative to send data to a custom handler and process streaming data?
This is my code until now:
def streamLoad(self,customHandler):
options = self.options
self.logger.info("Recuperando o schema baseado na estrutura do JSON")
jsonStrings = ['{"sku":"9","ean":"4","name":"DVD","description":"foo description","categories":[{"code":"M02_BLURAY_E_DVD_PLAYER"}],"attributes":[{"name":"attrTeste","value":"Teste"}]}']
myRDD = self.spark.sparkContext.parallelize(jsonStrings)
jsonSchema = self.spark.read.json(myRDD).schema # Maybe there is a way to serialize this
self.logger.info("Iniciando o streaming no Kafka[opções: {}]".format(str(options)))
df = self.spark \
.readStream \
.format("kafka") \
.option("maxFilesPerTrigger", 1) \
.option("kafka.bootstrap.servers", options["kafka.bootstrap.servers"]) \
.option("startingOffsets", options["startingOffsets"]) \
.option("subscribe", options["subscribe"]) \
.option("failOnDataLoss", options["failOnDataLoss"]) \
.load() \
.select(
col('value').cast("string").alias('json'),
col('key').cast("string").alias('kafka_key'),
col("timestamp").cast("string").alias('kafka_timestamp')
) \
.withColumn('pjson', from_json(col('json'), jsonSchema)).drop('json')
query = df \
.writeStream \
.foreach(customHandler) \ #This doesn't work in spark 2.3.x Alternatives, please?
.start()
query.awaitTermination()
I have read a csv file and converted the value field into bytes and wrote to a Kafka topic using Kafka producer application. Now I am trying to read from Kafka topic using Structured Streaming but not able to apply the custom kryo deserialization on value field.
Can anyone tell me how to use the custom deserialization in Structured Streaming?
I had a similar problem, basically, I had all my Kafka's messages on Protobuf and I solve that with UDF.
from pyspark.sql.functions import udf
def deserialization_function(message):
#You need to add your code to deserialize your messages
#I returned a json but you can return other structure
json = {"x": x_deserializable,
"y": y_deserializable,
"w": w_deserializable,
"z": z_deserializable,
return json
schema = StructType() \
.add("x", TimestampType()) \
.add("y", StringType()) \
.add("z", StringType()) \
.add("w", StringType())
own_udf = udf(deserialization_function, schema)
stream = spark.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", kafka_bootstrap_servers) \
.option("subscribe", topic) \
.load()
query = stream \
.select(col("value")) \
.select((own_udf("value")).alias("value_udf")) \
.select("value_udf.x", "value_udf.y", "value_udf.w", "value_udf.z")
I am experimenting with spark structured streaming (spark v2.2.0) to consume json data from kafka. However I encountered the following error.
pyspark.sql.utils.StreamingQueryException: 'Missing required
configuration "partition.assignment.strategy" which has no default
value.
Does anyone know why? The job was submitted using spark-submit below.
spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.2.0 sparksstream.py
This is the entire python script.
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
spark = SparkSession \
.builder \
.appName("test") \
.getOrCreate()
# Define schema of json
schema = StructType() \
.add("Session-Id", StringType()) \
.add("TransactionTimestamp", IntegerType()) \
.add("User-Name", StringType()) \
.add("ID", StringType()) \
.add("Timestamp", IntegerType())
# load data into spark-structured streaming
df = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "xxxx:9092") \
.option("subscribe", "topicName") \
.load() \
.select(from_json(col("value").cast("string"), schema).alias("parsed_value"))
# Print output
query = df.writeStream \
.outputMode("append") \
.format("console") \
.start()
use this instead to submit:
spark-submit \
--conf "spark.driver.extraClassPath=$SPARK_HOME/jars/kafka-clients-1.1.0.jar" \
--packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.2.0 \
sparksstream.py
Assuming that you have donwloaded the kafka-clients*jar in you $SPARK_HOME/jars folder