I was wondering if objective C does any check to see if a pointer to an object is nil before calling the function.
For example, say I have a
myObject* ptr;
and initialize
ptr = nil;
and call
[self myFunction:ptr];
where myFunction is my own function and does no check to see if the object is nil. I heard somewhere that objective C will not call the function if it is nil? Is this true and would my code be safe?
The reason I ask is because I'm implementing a universal app, and have an UIView instance that will only work for the ipad. But, I do many function calls for this view, and instead of doing condition checks to see if it is an ipad before calling the function, it would be great if I could set the view as nil if it's an iphone.
Also, if the interface builder allocated the object and I set the pointer to nil, will there be a memory leak or will the builder know to dealloc the object?
Thanks
You can always provide a method with a nil argument, but I think what you might be misunderstanding is about messaging nil.
MyClass *object = nil;
[object doSomething]; // nothing done, because object is nil
object = [[MyClass alloc] init];
[object doSomething]; // does something, because object points to an instance
To demonstrate providing nil as an argument:
NSMutableDictionary *myDict = [NSMutableDictionary dictionary];
[myDict setObject:#"Value 1" forKey:#"Key 1"];
[myDict setObject:nil forKey:#"Key 1"]; // perfectly valid
// myDict is empty again after setting nil value for "Key 1".
myDict = nil;
[myDict setObject:#"Value 1" forKey:#"Key 1"]; // nothing happens!
In the cases above, object and myDict are called the “receiver”. When the receiver is nil, no action is performed. This is quite different than other programming languages, for example, in C++ the following is not valid:
MyClass *object = NULL;
object->doSomething(); // oops, this is not allowed
As for the memory, if you have the object in the NIB file and then set its outlet to nil in the code, there will be a memory leak. You should release the object and then set it to nil.
It might be a good idea in that case, though, to simply create the object if it's an iPad and leave the variable as nil if it's an iPhone. That way you don't have to deal with any stray references that may crop up if you create the object in the NIB file. That may or may not be an issue, but it's probably better to create conditionally rather than destroy conditionally.
Related
I have the following variable defined:
#property (nonatomic, retain) NSMutableArray *arraySpeechSentences;
And I am trying to initialise it in the following way:
// Set the array of sentences to the stored array
NSMutableArray *speechSentences = [[NSMutableArray alloc] initWithArray:[tempDict objectForKey:key]];
arraySpeechSentences = speechSentences;
[speechSentences release];
When I try to call [arraySpeechSentences count] the application crashes. However, if I set the variable in the following way:
// Set the array of sentences to the stored array
NSMutableArray *speechSentences = [[NSMutableArray alloc] initWithArray:[tempDict objectForKey:key]];
self.arraySpeechSentences = speechSentences;
[speechSentences release];
I can call [arraySpeechSentences count] perfectly fine. I was under the impression that if you use self. it simply checks to see if variable is already set, and if so it will release the object before assigning it the new value. Have I got this wrong, and if so when should I be using self. to set values?
Thanks for any help,
Elliott
Using a setter (like self.foo = ... or [self setFoo:...]) does release the old value but it also retains the new value, which is needed in the example you give.
The issue is that you're alloc and init'ing your array, and then releasing it. This indicates you no longer need it. So, you should either use the setter (usually preferable) or don't release your array.
If you're not using ARC, you should type
arraySpeechSentences = [speechSentences retain];
because you're accessing the instance variable directly, which means the value of the instance variable arraySpeechSentences will be the address of the speechSentence object, which you just released, so which is an invalid pointer. The semantic you declared in the property doesn't have an effect on the instance variable itself.
When you type self.arraySpeechSentences, you're actually using a shortcut for the setter [self setArraySpeechSentences:speechSentences], which actually retains the value passed as parameter (if you synthesized the property, it is retained because you specified retain in the property declaration; if you wrote the accessor yourself, it is your job to ensure you retained the value).
I'll try to give a detail answer for this.
First when you use #property/#synthesize directive you create getter and setter methods around a variable.
In your case, the variable is called arraySpeechSentences (the compiler will create the variable for you) and you can access these methods (setters and getters) with self..
self.arraySpeechSentences = // something
is the same as
[self setArraySpeechSentences:something]; // setter
And
NSMutableArray* something = self.arraySpeechSentences;
is equal to
NSMutableArray* something = [self arraySpeechSentences]; // getter
In the first snippet of code
NSMutableArray *speechSentences = [[NSMutableArray alloc] initWithArray:[tempDict objectForKey:key]];
arraySpeechSentences = speechSentences;
arraySpeechSentences points to the same object speechSentences points to. But when you do [speechSentences release] you dealloc that object and now arraySpeechSentences is a dangling pointer. You receive a message sent to a deallocated instance I suppose. Try to enable Zombie to see it.
Speaking in terms of retain count, the array has a retain count of 1 when you do alloc-init.
But when you release it, the retain count goes to zero, the object doesn't exist anymore and you have a crash when you try to access arraySpeechSentences.
Instead, when you deal with properties, the policy applied to a variable is important. Since the property use a retain policy, when you set an object
self.arraySpeechSentences = // something
the retain count for the referenced object is increased. Under the hood, saying self.arraySpeechSentences = // something is equal to call the setter like
- (void)setArraySpeechSentences:(NSMutableArray*)newValue
{
// pseudo code here...
if(newValue != arraySpeechSentences) {
[arraySpeechSentences release];
arraySpeechSentences = [newValue retain];
}
}
The second snippet work since the retain count for your object is one when you do alloc-init, becomes two when you call self.arraySpeechSentences = and returns to one when you do the release. This time, the object is maintained alive since it has a retain count of 1.
If you have a property with a retain or copy policy, don't forget to release the object in dealloc like, otherwise you can have leaks.
- (void)dealloc
{
[arraySpeechSentences release];
[super dealloc];
}
To understand how Memory works I suggest to read MemoryManagement Apple doc.
P.S. Starting from iOS 5 there is a new compiler feature, called ARC (Automatic Reference Counting), that allows you to forget about retain/release calls. In addition, since it forces you to think in terms of object graphs, I suggest you to take a look into.
Hope that helps.
i have some trouble writing a method in Objective-C to make an object nil. Here is some example :
#interface testA : NSObject
{
NSString *a;
}
#property (nonatomic, retain) NSString *a;
+(testA*)initWithA:(NSString *)aString;
-(void)displayA;
-(void)nillify;
#end
#implementation testA
#synthesize a;
+(testA*)initWithA:(NSString *)aString{
testA *tst=[[testA alloc] init];
tst.a=aString;
return [tst autorelease];
}
-(void)displayA{
NSLog(#"%#",self.a);
}
-(void)nillify{
self=nil;
}
- (void)dealloc {
[a release];
[super dealloc];
}
#end
int main(int argc, char **argv){
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
testA *test=[testA initWithA:#"some test"];
[test displayA];
test=nil;
//[test nillify];
NSLog(#"after setting to nil");
[test displayA];
[pool release];
return 0;
}
Apparently , when I set test object to nil and then call some method on it nothing happens , but if i call nillify instead of directly setting it to nil , displayA method works normally like test object is still there. Is there a workaround for nillify method to function properly ?
Your help is much appreciated !
You can't actually do something like this, because setting 'self' to nil only has any effect within the scope of that method (in your case, 'nilify'). You don't have any actual way to effect the values of pointers located on other parts of the stack or in random places in the heap, for example.
Basically any code that holds a reference to some object is responsible for maintaining and clearing those references itself. If you have some use case where random sections of code may need references to "live" objects of some kind, but where you'd want those object references to go away in response to some external event (maybe a user tracking system or something), you could do something with notifications, but the various modules tracking those "live" objects would still be responsible for listening for notifications and cleaning up references when they received them.
The 'nilify' thing, however, can't possibly work.
You cannot do what you're trying to do. self is just a local reference to an object that actually exists elsewhere. Setting it to nil doesn't mean anything. An object doesn't, in general, own itself, and it certainly doesn't control other objects' references to it. It's up to the owning objects to manage its lifetime.
There are a few things wrong with your code.
First, by convention, class names start with an uppercase letter. Please stick to these naming conventions as it will make it harder for other developers to work with your code (and even confuse you).
Next, your initWithName:... According to the naming conventions, a method with init in its name should be an instance method, not a class method. So either name it newWithName: or turn it into an instance method like this:
-(testA*)initWithA:(NSString *)aString{
self = [super init];
if (!self) return nil;
tst.a=aString;
return self;
}
If you keep it as class method (and name it newWithName:) you should not return a autoreleased object since according to the naming conventions method that start with init... or new... return a retained object. If you do not follow these conventions, the static analyzer will give you "false" warnings and it will become useless for you.
Now for the reason your nillify doesn't work: the self is in fact an argument to a method. Under the hood, your nillify method actually has two arguments that you do not see: the self pointer and the selector pointer. This means, self is actually a variable on the stack. And if you overwrite it, you only overwrite that stack variable but that doesn't influence your test variable which is somewhere else.
As an example, consider a method - (void)foo:(NSString *)bar;. The compiler turns it into the equivalent of the C function (void) foo(id self, SEL _cmd, NSString *bar).
I'm new to cocoa / objective-c and i'm struggeling with the releases of my objects. I have the following code:
gastroCategoryList = [[NSMutableArray alloc] init];
for (NSDictionary *gastrocategory in gastrocategories) {
NSString *oid = [gastrocategory objectForKey:#"id"];
GastroCategory *gc = [[GastroCategory alloc] initWithId:[oid intValue] name:[gastrocategory objectForKey:#"name"]];
[gastroCategoryList addObject:gc];
}
The analyzer shows me that the "gastrocategory" defined in the for is a potential memory leak. But i'm not sure if i can release this at the end of the for loop?
Also at the following code:
- (NSArray *)eventsForStage:(int)stageId {
NSMutableArray *result = [[NSMutableArray alloc] init];
for (Event *e in eventList) {
if ([e stageId] == stageId) {
[result addObject:e];
}
}
return result;
}
The Analyzer tells me that my "result" is a potential leak. But where should I release this?
Is there also a simple rule to memorize when i should use assign, copy, retain etc. at the #property ?
Another problem:
- (IBAction)showHungryView:(id)sender {
GastroCategoriesView *gastroCategoriesView = [[GastroCategoriesView alloc] initWithNibName:#"GastroCategoriesView" bundle:nil];
[gastroCategoriesView setDataManager:dataManager];
UIView *currentView = [self view];
UIView *window = [currentView superview];
UIView *gastroView = [gastroCategoriesView view];
[window addSubview:gastroView];
CGRect pageFrame = currentView.frame;
CGFloat pageWidth = pageFrame.size.width;
gastroView.frame = CGRectOffset(pageFrame,pageWidth,0);
[UIView beginAnimations:nil context:NULL];
currentView.frame = CGRectOffset(pageFrame,-pageWidth,0);
gastroView.frame = pageFrame;
[UIView commitAnimations];
//[gastroCategoriesView release];
}
I don't get it, the "gastroCategoriesView" is a potential leak. I tried to release it at the end or with autorelease but neither works fine. Everytime I call the method my app is terminating. Thank you very much again!
In your loop, release each gc after adding it to the list since you won't need it in your loop scope anymore:
gastroCategoryList = [[NSMutableArray alloc] init];
for (NSDictionary *gastrocategory in gastrocategories) {
NSString *oid = [gastrocategory objectForKey:#"id"];
GastroCategory *gc = [[GastroCategory alloc] initWithId:[oid intValue] name:[gastrocategory objectForKey:#"name"]];
[gastroCategoryList addObject:gc];
[gc release];
}
In your method, declare result to be autoreleased to absolve ownership of it from your method:
NSMutableArray *result = [[[NSMutableArray alloc] init] autorelease];
// An alternative to the above, produces an empty autoreleased array
NSMutableArray *result = [NSMutableArray array];
EDIT: in your third issue, you can't release your view controller because its view is being used by the window. Setting it to autorelease also causes the same fate, only delayed.
You'll have to retain your GastroCategoriesView controller somewhere, e.g. in an instance variable of your app delegate.
BoltClock's answer is spot-on as to the first part of your question. I'll try to tackle the rest.
Assign is for simple, non-object types such as int, double, or struct. It generates a setter that does a plain old assignment, as in "foo = newFoo". Copy & retain will, as their names imply, either make a copy of the new value ("foo = [newFoo copy]") or retain it ("foo = [newFoo retain]"). In both cases, the setter will release the old value as appropriate.
So the question is, when to copy and when to retain. The answer is... it depends. How does your class use the new value? Will your class break if some other code modifies the incoming object? Say, for example, you have an NSString* property imaginatively named "theString." Other code can assign an NSMutableString instance to theString - that's legal, because it's an NSString subclass. But that other code might also keep its own reference to the mutable string object, and change its value - is your code prepared to deal with that possibility? If not, it should make its own copy, which the other code can't change.
On the other hand, if your own code makes no assumptions about whether theString might have been changed, and works just as well whether or not it was, then you'd save memory by retaining the incoming object instead of unnecessarily making a copy of it.
Basically, the rule, which is unfortunately not so simple sometimes, is to think carefully about whether your own code needs its own private copy, or can correctly deal with a shared object whose value might be changed by other code.
The reason you can release gc after it is added to the gastroCategoryList is that when an object is added to an array, the array retains that object. So, even though you release your gc, it will still be around; retained by the gastroCategoryList.
When you are returning a newly created object from a method, you need to call autorelease. This will cause the object to be released only after the runtime leaves the scope of the calling method, thereby giving the calling method a chance to do something with the returned value.
Note that if your method starts with the word copy or new, then you should not autorelease your object; you should leave it for the calling method to release.
As for copy vs retain vs assign... as a general rule, copy objects that have a mutable version, such as NSArray, NSSet, NSDictionary, and NSString. This will ensure that the object you have a pointer to is not mutable when you don't want it to be.
Otherwise, use retain whenever you want your class to be ensured that an object is still in memory. This will apply to almost every object except for objects that are considered parents of your object, in which case you would use assign. (See the section on retain cycles here).
Also note that you have to use assign for non-object types such as int.
Read through the Memory Management Programming Guide a bit; it's quite helpful.
I have a sample app which i downloaded from net
In this i was unable to understand following code
UILocalNotification *localNotif = [[UILocalNotification alloc] init];
if (localNotif == nil)
return;
also
if (!array1)
return;
does this code means if object does not exists then return.....
HELP
In Cocoa, an initialiser will either return an object pointer if the call was successful, or a nil if it was unable to create the object.
Both cases are checking for the existence of the object. Actually, checking for the existence of a pointer to the object and simply returning if the object does not exist. As an example, here is a common form of initialiser for an object.
- (id)init {
// Call the superclass initialiser first and check that it was successful.
if (!(self = [super init])) {
// If the superclass initialiser failed then self will be nil.
// return a nil because we cannot create this object.
return nil; // Bail!
}
// Do more initialising
// If we can initialise the superclass and ourself, return a pointer to ourself
return self;
}
However, the snippets you have provided are not enough to tell whether the code is correct. For example, the first example is incorrect if it is part of an initialiser method because it is not returning any kind of object.
Edit
From your further examples both of these print hiiiiiiii
NSArray *arr;
if(arr) { NSLog(#"hiiiiii");
and
NSArray *arr = [[NSArray alloc]init];
if(arr) { NSLog(#"hiiiiii");
In the first case you are declaring arr to be a pointer to an NSArray, but because it hasn't been initialised this pointer is just a garbage value of random numbers. But it isn't nil So your if-statement evaluates as true. That doesn't mean that it is a valid pointer to an NSArray.
In your second example you declare an NSArray pointer and initialise it. This was successfully initialised so the pointer is not nil and the if-statement evaluates as true. In this case you do have a valid NSArray pointer.
Declaration is not initialisation!
Maybe if you explain what it is that you are trying to do we'll be able to better answer your questions.
They are both checking if the object is nil. In the first case it seems a bit silly though :)
Yes, except in the first case localNotif will not be nil because it has been set
I often see when we release ab object we immediately set it to nil. I know that release and nil both free the old value associated with object but in case of release it leaves the object as a dangling pointer so we have to set it to nil.
So my question is if nil frees the old value of the object and set the object to nil why should not we only use nil why w should use release too.
Way1:
MyClass *obj = [[MyClass alloc] init];
[obj release];
obj = nil;
Way2:
MyClass *obj = [[MyClass alloc] init];
obj = nil;
What is the real difference in way1 and way2 if use way1 why don't use way2 only?
Setting a pointer to nil does not release the memory occupied by the former destination of that pointer. In plain english, assigning it to nil does not release it.
If your application is garbage collected, release is a no-op and can be left out. Otherwise, it's very, very necessary. Hence, Way 1 is always correct, and Way 2 is correct only under garbage collection.
Note: This answer does not apply to projects using Automatic Reference Counting. Under ARC, setting a pointer to nil does send a release to the object.
It's as BJ said setting it to nil won't free up the memory, and in a non-gc collected environment would cause a memory leak. An alternative that'd possibly be valid as well would be
MyClass *obj = [[[MyClass alloc] init] autorelease];
obj = nil;