I have a sample app which i downloaded from net
In this i was unable to understand following code
UILocalNotification *localNotif = [[UILocalNotification alloc] init];
if (localNotif == nil)
return;
also
if (!array1)
return;
does this code means if object does not exists then return.....
HELP
In Cocoa, an initialiser will either return an object pointer if the call was successful, or a nil if it was unable to create the object.
Both cases are checking for the existence of the object. Actually, checking for the existence of a pointer to the object and simply returning if the object does not exist. As an example, here is a common form of initialiser for an object.
- (id)init {
// Call the superclass initialiser first and check that it was successful.
if (!(self = [super init])) {
// If the superclass initialiser failed then self will be nil.
// return a nil because we cannot create this object.
return nil; // Bail!
}
// Do more initialising
// If we can initialise the superclass and ourself, return a pointer to ourself
return self;
}
However, the snippets you have provided are not enough to tell whether the code is correct. For example, the first example is incorrect if it is part of an initialiser method because it is not returning any kind of object.
Edit
From your further examples both of these print hiiiiiiii
NSArray *arr;
if(arr) { NSLog(#"hiiiiii");
and
NSArray *arr = [[NSArray alloc]init];
if(arr) { NSLog(#"hiiiiii");
In the first case you are declaring arr to be a pointer to an NSArray, but because it hasn't been initialised this pointer is just a garbage value of random numbers. But it isn't nil So your if-statement evaluates as true. That doesn't mean that it is a valid pointer to an NSArray.
In your second example you declare an NSArray pointer and initialise it. This was successfully initialised so the pointer is not nil and the if-statement evaluates as true. In this case you do have a valid NSArray pointer.
Declaration is not initialisation!
Maybe if you explain what it is that you are trying to do we'll be able to better answer your questions.
They are both checking if the object is nil. In the first case it seems a bit silly though :)
Yes, except in the first case localNotif will not be nil because it has been set
Related
I am designing a new application by modernizing code I wrote in the past. This old code uses the class/delegate model and I am trying to transform them to use blocks as callbacks, not the delegate stuff.
What I do is to create a property like
#property (nonatomic, copy) void (^onTouch)(NSInteger index);
That would pass to the object using that class a block where code can be inserted and in this case executed on touch.
But my problem is this. When you use delegates and you have a method on the delegate protocol, Xcode will warn if you use that class and forget to implement the delegate protocols. Is that a way to do that with blocks? Or in other words: is there a way to make Xcode complain if a callback block is not defined by the caller?
I mean this would be the correct:
MyClass *obj = [[MyClass alloc] init];
obj.onTouch = ^(NSInteger *index){ //call back code to be executed };
This would be OK too
MyClass *obj = [[MyClass alloc] init];
obj.onTouch = nil;
but this would generate a message
MyClass *obj = [[MyClass alloc] init];
// no callback block defined.
Is this possible?
If you want to enforce setting a certain parameter, I would include it in the initializer.
MyClass *obj = [[MyClass alloc] initWithBlock:^(NSInteger *index) { /* code*/ }];
Then, in MyClass:
- (id)init {
// This will result in a runtime error if you use the wrong initializer.
NSAssert(NO, #"Use initWithBlock instead.");
}
- (id)initWithBlock(initWithBlock:^(NSInteger *)block) {
self = [super init];
if (self) {
self.onTouch = block;
}
return self;
}
Also note, attempting to execute a NULL block results in a crash, so make sure to do:
if (self.onTouch) { self.onTouch(); }
Wherever you run the block.
First, I strongly recommend defining types to represent your blocks - makes them a lot easier to work with, especially if you need to refactor the parameters.
You can't write code that distinguishes between "I set this property to nil" or "the runtime initialized this property to nil", at least not without some crazy runtime code to check the stack. Only option I can think of would be to use the null object pattern. Before I elaborate, bear in mind that I haven't actually tried to test this, but it should work. Define a block that means 'has no value' and set your property to point to that block on init. Then you can compare to that NullBlock at runtime to identify if someone explicitly set the property to nil (because it would be nil at that point) or gave it a real non-nil value.
Alternatively, if you don't mind manually writing your set accessors, you could have a BOOL that tracks if someone set the property explicitly. Then when you call the block just check if someone actually set the value or not.
#synthesize onTouchBlock=_onTouchBlock;
MyBlock _onTouchBlock;
BOOL _onTouchBlockWasSet;
- (void)setOnTouchBlock:(MyBlock)block {
_onTouchBlockWasSet = YES;
_onTouchBlock = block;
}
I would not recommend passing the value in the initializer because that makes it tied to the creation of that object type. If you wanted to change the block in code based on some condition, you'd be back to square one. Also, it prevents you from using storyboards which create that object.
i have some trouble writing a method in Objective-C to make an object nil. Here is some example :
#interface testA : NSObject
{
NSString *a;
}
#property (nonatomic, retain) NSString *a;
+(testA*)initWithA:(NSString *)aString;
-(void)displayA;
-(void)nillify;
#end
#implementation testA
#synthesize a;
+(testA*)initWithA:(NSString *)aString{
testA *tst=[[testA alloc] init];
tst.a=aString;
return [tst autorelease];
}
-(void)displayA{
NSLog(#"%#",self.a);
}
-(void)nillify{
self=nil;
}
- (void)dealloc {
[a release];
[super dealloc];
}
#end
int main(int argc, char **argv){
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
testA *test=[testA initWithA:#"some test"];
[test displayA];
test=nil;
//[test nillify];
NSLog(#"after setting to nil");
[test displayA];
[pool release];
return 0;
}
Apparently , when I set test object to nil and then call some method on it nothing happens , but if i call nillify instead of directly setting it to nil , displayA method works normally like test object is still there. Is there a workaround for nillify method to function properly ?
Your help is much appreciated !
You can't actually do something like this, because setting 'self' to nil only has any effect within the scope of that method (in your case, 'nilify'). You don't have any actual way to effect the values of pointers located on other parts of the stack or in random places in the heap, for example.
Basically any code that holds a reference to some object is responsible for maintaining and clearing those references itself. If you have some use case where random sections of code may need references to "live" objects of some kind, but where you'd want those object references to go away in response to some external event (maybe a user tracking system or something), you could do something with notifications, but the various modules tracking those "live" objects would still be responsible for listening for notifications and cleaning up references when they received them.
The 'nilify' thing, however, can't possibly work.
You cannot do what you're trying to do. self is just a local reference to an object that actually exists elsewhere. Setting it to nil doesn't mean anything. An object doesn't, in general, own itself, and it certainly doesn't control other objects' references to it. It's up to the owning objects to manage its lifetime.
There are a few things wrong with your code.
First, by convention, class names start with an uppercase letter. Please stick to these naming conventions as it will make it harder for other developers to work with your code (and even confuse you).
Next, your initWithName:... According to the naming conventions, a method with init in its name should be an instance method, not a class method. So either name it newWithName: or turn it into an instance method like this:
-(testA*)initWithA:(NSString *)aString{
self = [super init];
if (!self) return nil;
tst.a=aString;
return self;
}
If you keep it as class method (and name it newWithName:) you should not return a autoreleased object since according to the naming conventions method that start with init... or new... return a retained object. If you do not follow these conventions, the static analyzer will give you "false" warnings and it will become useless for you.
Now for the reason your nillify doesn't work: the self is in fact an argument to a method. Under the hood, your nillify method actually has two arguments that you do not see: the self pointer and the selector pointer. This means, self is actually a variable on the stack. And if you overwrite it, you only overwrite that stack variable but that doesn't influence your test variable which is somewhere else.
As an example, consider a method - (void)foo:(NSString *)bar;. The compiler turns it into the equivalent of the C function (void) foo(id self, SEL _cmd, NSString *bar).
I have a function That takes by reference any kind of object
-(BOOL)RemoteCall:(id**)DataClass;
in the implementation i use [*DataClass isMemberOfClass:[NSMutableArray class] to find out the type of the object. The problem is it does not work with NSMUtableArrays Does anybody have a solution to this problem ? Here is the relevant code:
Implementation:
-(BOOL)RemoteCall:(id**)DataClass
{
if([*DataClass isMemberOfClass:[NSMutableArray class] ] == YES)
{
NSMutableArray * SW =(NSMutableArray *)*DataClass;
//do something with SW
DataClass= (id**)SW;
return TRUE;
}
}
Any help and I mean anything at all will be appreciated, I'm stuck.
Method Call:
NSMutableArray * channelArray = [[NSMutableArray alloc]init]
Services * serv = [[Services alloc] init];
return [serv RemoteCall:&channelArray];
Pass by reference in Objective-C is almost never the right way.
There are a number of problems with that code.
(id**) is a pointer to a pointer to a pointer to an object. Probably not at all what you want.
YES and NO are BOOL return types; not TRUE
there is no reason in that code to be returning something by reference.
method names start with lower case letters. Arguments do, too.
There will never be an instance of NSMutableArray in an application; just subclasses
You can't tell the difference between a mutable and immutable array in the first place; check for isKindOfClass: or isMemberOfClass: for an NSMutableArray won't do you much good (it is useful, but misleading).
This is better:
-(BOOL)remoteCall: (id) dataThing
{
if([dataThing isKindOfClass:[NSMutableArray class]] == YES)
{
NSMutableArray *swArray = dataThing; // not strictly necessary, but good defensive practice
//do something with swArray
return YES;
}
return NO;
}
To be called like:
NSMutableArray * channelArray = [[NSMutableArray alloc]init]; // you'll need to release this somewhere
Services * serv = [[Services alloc] init];
return [serv remoteCall:channelArray];
Since you don't return a different array in remoteCall:, channelArray's contents will be manipulated by the method and the YES/NO return value.
If there is some reason why the above seemingly won't work for you, please explain why.
Note: The code obviously requires an NSMutableArray if you are going to muck with the contents. The isKindOfClass: could be checking for NSMutableArray or NSArray and it wouldn't matter either way. When using arrays in your code and requiring a mutable array, it is up to you to make sure the data flow is correct such that you don't end up w/an immutable array where you need a mutable array.
If you don't need to reassign your variable, then don't use this. id or NSObject * is just fine and works by reference anyway. id * or NSObject ** would be references. id ** doesn't make sense at all here.
Also, learn naming conventions (like upper/lowercase).
NSArray is a class cluster. That means that every NSArray instance is actually an instance of some subclass. Only isKindOfClass: is useful for class-membership testing with class clusters.
Also... thats horrible code - please accept this:
-(BOOL)remoteCall:(id)dataClass {
if([dataClass isKindOfClass:[NSMutableArray class]]) {
NSMutableArray *sw =(NSMutableArray *)dataClass;
return YES;
}
}
that should work.
Constructive critisism of coding: You need to adhere to coding conventions. Although your code will work... its not brilliant to read and theres a lot of unnecessary *s and such.
Function names should be camel coded with a preceeding lower-case letter as should variable names. Passing (id) into a function doesn't require *s at all. Objects you pass into a function only available throughout the scope of the method anyway and that method doesn't own it, I'm not sure what you're trying to do with all the extra *s, but just treat objects you pass into the method as if you don't own them. :)
As Eiko said before, i'd use just id and not double pointers to ID.
I'm also pretty sure that isMemberOfClass is your Problem. isMember does not check for inheritance, so you're only asking for Top level Classes. isKindOfClass is probably the better choice, as there is no guarantee that Apple doesn't use an internal subclass of NSMutableArray internally. Check the Apple Docs.
i'd write it as such:
-(BOOL)RemoteCall:(id)dataClass
{
if([dataClass isKindOfClass:[NSMutableArray class] ] == YES)
{
NSMutableArray * SW =(NSMutableArray *)dataClass;
//do something with SW
return TRUE;
}
}
I was wondering if objective C does any check to see if a pointer to an object is nil before calling the function.
For example, say I have a
myObject* ptr;
and initialize
ptr = nil;
and call
[self myFunction:ptr];
where myFunction is my own function and does no check to see if the object is nil. I heard somewhere that objective C will not call the function if it is nil? Is this true and would my code be safe?
The reason I ask is because I'm implementing a universal app, and have an UIView instance that will only work for the ipad. But, I do many function calls for this view, and instead of doing condition checks to see if it is an ipad before calling the function, it would be great if I could set the view as nil if it's an iphone.
Also, if the interface builder allocated the object and I set the pointer to nil, will there be a memory leak or will the builder know to dealloc the object?
Thanks
You can always provide a method with a nil argument, but I think what you might be misunderstanding is about messaging nil.
MyClass *object = nil;
[object doSomething]; // nothing done, because object is nil
object = [[MyClass alloc] init];
[object doSomething]; // does something, because object points to an instance
To demonstrate providing nil as an argument:
NSMutableDictionary *myDict = [NSMutableDictionary dictionary];
[myDict setObject:#"Value 1" forKey:#"Key 1"];
[myDict setObject:nil forKey:#"Key 1"]; // perfectly valid
// myDict is empty again after setting nil value for "Key 1".
myDict = nil;
[myDict setObject:#"Value 1" forKey:#"Key 1"]; // nothing happens!
In the cases above, object and myDict are called the “receiver”. When the receiver is nil, no action is performed. This is quite different than other programming languages, for example, in C++ the following is not valid:
MyClass *object = NULL;
object->doSomething(); // oops, this is not allowed
As for the memory, if you have the object in the NIB file and then set its outlet to nil in the code, there will be a memory leak. You should release the object and then set it to nil.
It might be a good idea in that case, though, to simply create the object if it's an iPad and leave the variable as nil if it's an iPhone. That way you don't have to deal with any stray references that may crop up if you create the object in the NIB file. That may or may not be an issue, but it's probably better to create conditionally rather than destroy conditionally.
I initialized a class in my singleton called DataModel. Now, from my UIViewController, when I click a button, I have a method that is trying to access that class so that I may add an object to one of its dictionaries. My get/set method passes back the pointer to the class from my singleton, but when I am back in my UIViewController, the class passed back doesn't respond to methods. It's like it's just not there. I think it has something to do with the difference in passing pointers around classes or something. I even tried using the copy method to throw a copy back, but no luck.
UIViewController:
ApplicationSingleton *applicationSingleton = [[ApplicationSingleton alloc] init];
DataModel *dataModel = [applicationSingleton getDataModel];
[dataModel retrieveDataCategory:dataCategory];
Singleton:
ApplicationSingleton *m_instance;
DataModel *m_dataModel;
- (id) init {
NSLog(#"ApplicationSingleton.m initialized.");
self = [super init];
if(self != nil) {
if(m_instance != nil) {
return m_instance;
}
NSLog(#"Initializing the application singleton.");
m_instance = self;
m_dataModel = [[DataModel alloc] init];
}
NSLog(#"ApplicationSingleton init method returning.");
return m_instance;
}
-(DataModel *)getDataModel {
DataModel *dataModel_COPY = [m_dataModel copy];
return dataModel_COPY;
}
For the getDataModel method, I also tried this:
-(DataModel *)getDataModel {
return m_dataModel;
}
In my DataModel retrieveDataCategory method, I couldn't get anything to work. I even just tried putting a NSLog in there but it never would come onto the console.
Any ideas?
Most likely you are sending messages that get ignored, e.g. they're being sent to objects which don't exist/aren't the one you're looking for, and for some reason aren't crashing. This occurs in the case of messaging nil, or possibly other illegitimate values. Although you seem to expect that the m_ variables will be initialized to 0, this is not good form, and furthermore you are not following a very typical objc pattern for your singletons -- m_dataModel should be an ivar of m_instance, and m_instance should probably be declared static, as you probably don't want it accessed from other files directly. In addition, the most likely source of your bug is somehow the -init method, which should never be called on a singleton -- instead do something like this:
+ (ApplicationSingleton *)sharedInstance {
static ApplicationSingleton *instance = nil;
if(!instance) {
instance = [[self alloc] init]; //or whatever custom initializer you would like, furthermore some people just put the initialization code here and leave -init empty
}
return instance;
}
the code you have now leaks because you allocate an object (self) and don't release it before returning a potentially different instance (the shared one if one already exists), such that the newly allocated one is typically lost.