I've tried this line of code
def **[A <% Numeric[A]](l:List[A],m:List[A])=l.zip(m).map({t=>t._1*t._2})
However on compilation, I get this error
error: value * is not a member of type parameter A
def **[A <% Numeric[A]](l:List[A],m:List[A])=l.zip(m).map({t=>t._1*t._2})
When I look at the source for the Numeric trait, I see a * op defined.
What am I doing wrong?
The instance of Numeric is not a number itself, but it is an object that offers operations to do the arithmetic. For example, an object num of type Numeric[Int] can add two integers like this: num.plus(3, 5) The result of this operation is the integer 7.
For integers, this is very trivial. However, for all basic numerical types, there is one implicit instance of Numeric available. And if you define your own numeric types, you can provide one.
Therefore, you should leave the bounds for A open and add an implicit parameter of type Numeric[A], with which you do the calculations. Like this:
def **[A](l:List[A],m:List[A])(implicit num:Numeric[A])=l.zip(m).map({t=>num.times(t._1, t._2)})
Of course, num.times(a,b) looks less elegant than a*b. In most of the cases, one can live with that. However, you can wrap the value a in an object of type Ops that supports operators, like this:
// given are: num:Numeric[A], a:A and b:A
val a_ops = num.mkNumericOps(a)
val product = a_ops * b
Since the method mkNumericOps is declared implicit, you can also import it and use it implicitly:
// given are: num:Numeric[A], a:A and b:A
import num._
val product = a * b
You can also solve this with a context bound. Using the context method from this answer, you can write:
def **[A : Numeric](l:List[A],m:List[A]) =
l zip m map { t => context[A]().times(t._1, t._2) }
or
def **[A : Numeric](l:List[A],m:List[A]) = {
val num = context[A]()
import num._
l zip m map { t => t._1 * t._2 }
}
Related
I'm confused about the generic type. I expect that 2.asInstanceOf[A] is cast to the type A, meanwhile, it's cast to Int.
Besides that, the input is java.lang.Long whereas the output is a list of Int (according to the definition the input and the output should be the same type). Why is that?
def whatever[A](x: A): List[A] = {
val two = 2.asInstanceOf[A]
val l = List(1.asInstanceOf[A],2.asInstanceOf[A])
println(f"Input type inside the function for 15L: ${x.getClass}")
println(f"The class of two: ${two.getClass}, the value of two: $two")
println(f"The class of the first element of l: ${l.head.getClass}, first element value: ${l.head}")
l
}
println(f"Returned from whatever function: ${whatever(15L)}")
the outupt:
Input type inside the function for 15L: class java.lang.Long
The class of two: class java.lang.Integer, the value of two: 2
The class of the first element of l: class java.lang.Integer, first element value: 1
Returned from whatever function: List(1, 2)
a.asInstanceOf[B] means:
Dear compiler;
Please forget what you think the type of a is. I know better. I know that if a isn't actually type B then my program could blow up, but I'm really very smart and that's not going to happen.
Sincerely yours, Super Programmer
In other words val b:B = a.asInstanceOf[B] won't create a new variable of type B, it will create a new variable that will be treated as if it were type B. If the actual underlying type of a is compatible with type B then everything is fine. If a's real type is incompatible with B then things blow up.
Type erasure. For the purposes of type checking 2 is cast to A; but at a later compilation stage A is erased to Object, so your code becomes equivalent to
def whatever(x: Object): List[Object] = {
val two = 2.asInstanceOf[Object]
val l = List(1.asInstanceOf[Object],2.asInstanceOf[Object])
println(f"Input type inside the function for 15L: ${x.getClass}")
println(f"The class of two: ${two.getClass}, the value of two: $two")
println(f"The class of the first element of l: ${l.head.getClass}, first element value: ${l.head}")
l
}
2.asInstanceOf[Object] is a boxing operation returning a java.lang.Integer.
If you try to actually use the return value as a List[Long] you'll eventually get a ClassCastException, e.g.
val list = whatever(15L)
val x = list(0)
x will be inferred to be Long and a cast inserted to unbox the expected java.lang.Long.
The answer from #jwvh is on point. Here I'll only add a solution in case you want to fix the problem of safely converting an Int to an A in whatever, without knowing what A is. This is of course only possible if you provide a way to build a particular A from an Int. We can do this in using a type-class:
trait BuildableFromInt[+A] {
def fromInt(i: Int): A
}
Now you only have to implicitly provide BuildableFromInt for any type A you wish to use in whatever:
object BuildableFromInt {
implicit val longFromInt: BuildableFromInt[Long] = Long.box(_)
}
and now define whatever to only accept compliant types A:
def whatever[A : BuildableFromInt](x: A): List[A] = {
val two = implicitly[BuildableFromInt[A]].fromInt(2)
// Use two like any other "A"
// ...
}
Now whatever can be used with any type for which a BuildableFromInt is available.
I'd like to enrich a 'graph for scala' graph. For this purpose i've created an implicit value class:
import scalax.collection.mutable
import scalax.collection.edge.DiEdge
...
type Graph = mutable.Graph[Int, DiEdge]
implicit class EnrichGraph(val G: Graph) extends AnyVal {
def roots = G.nodes.filter(!_.hasPredecessors)
...
}
...
The problem lies with the return type of its methods, e.g.:
import ....EnrichGraph
val H: Graph = mutable.Graph[Int,DiEdge]()
val roots1 = H.nodes.filter(!_.hasPredecessors) // type Iterable[H.NodeT]
val roots2 = H.roots // type Iterable[RichGraph#G.NodeT] !!
val subgraph1 = H.filter(H.having(roots1)) // works!
val subgraph2 = H.filter(H.having(roots2)) // type mismatch!
Does the cause lie with fact that 'Graph' has dependent subtypes, e.g. NodeT? Is there a way to make this enrichment work?
What usually works is propagating the singleton type as a type parameter to EnrichGraph. That means a little bit of extra boilerplate since you have to split the implicit class into a class and an implicit def.
class EnrichGraph[G <: Graph](val G: G) extends AnyVal {
def roots: Iterable[G#NodeT] = G.nodes.filter(!_.hasPredecessors)
//...
}
implicit def EnrichGraph(g: Graph): EnrichGraph[g.type] = new EnrichGraph[g.type](g)
The gist here being that G#NodeT =:= H.NodeT if G =:= H.type, or in other words (H.type)#NodeT =:= H.NodeT. (=:= is the type equality operator)
The reason you got that weird type, is that roots has a path type dependent type. And that path contains the value G. So then the type of val roots2 in your program would need to contain a path to G. But since G is bound to an instance of EnrichGraph which is not referenced by any variable, the compiler cannot construct such a path. The "best" thing the compiler can do is construct a type with that part of the path left out: Set[_1.G.NodeT] forSome { val _1: EnrichGraph }. This is the type I actually got with your code; I assume you're using Intellij which is printing this type differently.
As pointed out by #DmytroMitin a version which might work better for you is:
import scala.collection.mutable.Set
class EnrichGraph[G <: Graph](val G: G) extends AnyVal {
def roots: Set[G.NodeT] = G.nodes.filter(!_.hasPredecessors)
//...
}
implicit def EnrichGraph(g: Graph): EnrichGraph[g.type] = new EnrichGraph[g.type](g)
Since the rest of your code actually requires a Set instead of an Iterable.
The reason why this still works despite reintroducing the path dependent type is quite tricky. Actually now roots2 will receive the type Set[_1.G.NodeT] forSome { val _1: EnrichGraph[H.type] } which looks pretty complex. But the important part is that this type still contains the knowledge that the G in _1.G.NodeT has type H.type because that information is stored in val _1: EnrichGraph[H.type].
With Set you can't use G#NodeT to give you the simpler type signatures, because G.NodeT is a subtype of G#NodeT and Set is unfortunately invariant. In our usage those type will actually always be equivalent (as I explained above), but the compiler cannot know that.
tl;dr: How do I do something like the made up code below:
def notFunctor[M[_] : Not[Functor]](m: M[_]) = s"$m is not a functor"
The 'Not[Functor]', being the made up part here.
I want it to succeed when the 'm' provided is not a Functor, and fail the compiler otherwise.
Solved: skip the rest of the question and go right ahead to the answer below.
What I'm trying to accomplish is, roughly speaking, "negative evidence".
Pseudo code would look something like so:
// type class for obtaining serialization size in bytes.
trait SizeOf[A] { def sizeOf(a: A): Long }
// type class specialized for types whose size may vary between instances
trait VarSizeOf[A] extends SizeOf[A]
// type class specialized for types whose elements share the same size (e.g. Int)
trait FixedSizeOf[A] extends SizeOf[A] {
def fixedSize: Long
def sizeOf(a: A) = fixedSize
}
// SizeOf for container with fixed-sized elements and Length (using scalaz.Length)
implicit def fixedSizeOf[T[_] : Length, A : FixedSizeOf] = new VarSizeOf[T[A]] {
def sizeOf(as: T[A]) = ... // length(as) * sizeOf[A]
}
// SizeOf for container with scalaz.Foldable, and elements with VarSizeOf
implicit def foldSizeOf[T[_] : Foldable, A : SizeOf] = new VarSizeOf[T[A]] {
def sizeOf(as: T[A]) = ... // foldMap(a => sizeOf(a))
}
Keep in mind that fixedSizeOf() is preferable where relevant, since it saves us the traversal over the collection.
This way, for container types where only Length is defined (but not Foldable), and for elements where a FixedSizeOf is defined, we get improved performance.
For the rest of the cases, we go over the collection and sum individual sizes.
My problem is in the cases where both Length and Foldable are defined for the container, and FixedSizeOf is defined for the elements. This is a very common case here (e.g.,: List[Int] has both defined).
Example:
scala> implicitly[SizeOf[List[Int]]].sizeOf(List(1,2,3))
<console>:24: error: ambiguous implicit values:
both method foldSizeOf of type [T[_], A](implicit evidence$1: scalaz.Foldable[T], implicit evidence$2: SizeOf[A])VarSizeOf[T[A]]
and method fixedSizeOf of type [T[_], A](implicit evidence$1: scalaz.Length[T], implicit evidence$2: FixedSizeOf[A])VarSizeOf[T[A]]
match expected type SizeOf[List[Int]]
implicitly[SizeOf[List[Int]]].sizeOf(List(1,2,3))
What I would like is to be able to rely on the Foldable type class only when the Length+FixedSizeOf combination does not apply.
For that purpose, I can change the definition of foldSizeOf() to accept VarSizeOf elements:
implicit def foldSizeOfVar[T[_] : Foldable, A : VarSizeOf] = // ...
And now we have to fill in the problematic part that covers Foldable containers with FixedSizeOf elements and no Length defined. I'm not sure how to approach this, but pseudo-code would look something like:
implicit def foldSizeOfFixed[T[_] : Foldable : Not[Length], A : FixedSizeOf] = // ...
The 'Not[Length]', obviously, being the made up part here.
Partial solutions I am aware of
1) Define a class for low priority implicits and extend it, as seen in 'object Predef extends LowPriorityImplicits'.
The last implicit (foldSizeOfFixed()) can be defined in the parent class, and will be overridden by alternative from the descendant class.
I am not interested in this option because I'd like to eventually be able to support recursive usage of SizeOf, and this will prevent the implicit in the low priority base class from relying on those in the sub class (is my understanding here correct? EDIT: wrong! implicit lookup works from the context of the sub class, this is a viable solution!)
2) A rougher approach is relying on Option[TypeClass] (e.g.,: Option[Length[List]]. A few of those and I can just write one big ol' implicit that picks Foldable and SizeOf as mandatory and Length and FixedSizeOf as optional, and relies on the latter if they are available. (source: here)
The two problems here are lack of modularity and falling back to runtime exceptions when no relevant type class instances can be located (this example can probably be made to work with this solution, but that's not always possible)
EDIT: This is the best I was able to get with optional implicits. It's not there yet:
implicit def optionalTypeClass[TC](implicit tc: TC = null) = Option(tc)
type OptionalLength[T[_]] = Option[Length[T]]
type OptionalFixedSizeOf[T[_]] = Option[FixedSizeOf[T]]
implicit def sizeOfContainer[
T[_] : Foldable : OptionalLength,
A : SizeOf : OptionalFixedSizeOf]: SizeOf[T[A]] = new SizeOf[T[A]] {
def sizeOf(as: T[A]) = {
// optionally calculate using Length + FixedSizeOf is possible
val fixedLength = for {
lengthOf <- implicitly[OptionalLength[T]]
sizeOf <- implicitly[OptionalFixedSizeOf[A]]
} yield lengthOf.length(as) * sizeOf.fixedSize
// otherwise fall back to Foldable
fixedLength.getOrElse {
val foldable = implicitly[Foldable[T]]
val sizeOf = implicitly[SizeOf[A]]
foldable.foldMap(as)(a => sizeOf.sizeOf(a))
}
}
}
Except this collides with fixedSizeOf() from earlier, which is still necessary.
Thanks for any help or perspective :-)
I eventually solved this using an ambiguity-based solution that doesn't require prioritizing using inheritance.
Here is my attempt at generalizing this.
We use the type Not[A] to construct negative type classes:
import scala.language.higherKinds
trait Not[A]
trait Monoid[_] // or import scalaz._, Scalaz._
type NotMonoid[A] = Not[Monoid[A]]
trait Functor[_[_]] // or import scalaz._, Scalaz._
type NotFunctor[M[_]] = Not[Functor[M]]
...which can then be used as context bounds:
def foo[T: NotMonoid] = ...
We proceed by ensuring that every valid expression of Not[A] will gain at least one implicit instance.
implicit def notA[A, TC[_]] = new Not[TC[A]] {}
The instance is called 'notA' -- 'not' because if it is the only instance found for 'Not[TC[A]]' then the negative type class is found to apply; the 'A' is commonly appended for methods that deal with flat-shaped types (e.g. Int).
We now introduce an ambiguity to turn away cases where the undesired type class is applied:
implicit def notNotA[A : TC, TC[_]] = new Not[TC[A]] {}
This is almost exactly the same as 'NotA', except here we are only interested in types for which an instance of the type class specified by 'TC' exists in implicit scope. The instance is named 'notNotA', since by merely matching the implicit being looked up, it will create an ambiguity with 'notA', failing the implicit search (which is our goal).
Let's go over a usage example. We'll use the 'NotMonoid' negative type class from above:
implicitly[NotMonoid[java.io.File]] // succeeds
implicitly[NotMonoid[Int]] // fails
def showIfNotMonoid[A: NotMonoid](a: A) = a.toString
showIfNotMonoid(3) // fails, good!
showIfNotMonoid(scala.Console) // succeeds for anything that isn't a Monoid
So far so good! However, types shaped M[_] and type classes shaped TC[_[_]] aren't supported yet by the scheme above. Let's add implicits for them as well:
implicit def notM[M[_], TC[_[_]]] = new Not[TC[M]] {}
implicit def notNotM[M[_] : TC, TC[_[_]]] = new Not[TC[M]] {}
implicitly[NotFunctor[List]] // fails
implicitly[NotFunctor[Class]] // succeeds
Simple enough. Note that Scalaz has a workaround for the boilerplate resulting from dealing with several type shapes -- look for 'Unapply'. I haven't been able to make use of it for the basic case (type class of shape TC[_], such as Monoid), even though it worked on TC[_[_]] (e.g. Functor) like a charm, so this answer doesn't cover that.
If anybody's interested, here's everything needed in a single snippet:
import scala.language.higherKinds
trait Not[A]
object Not {
implicit def notA[A, TC[_]] = new Not[TC[A]] {}
implicit def notNotA[A : TC, TC[_]] = new Not[TC[A]] {}
implicit def notM[M[_], TC[_[_]]] = new Not[TC[M]] {}
implicit def notNotM[M[_] : TC, TC[_[_]]] = new Not[TC[M]] {}
}
import Not._
type NotNumeric[A] = Not[Numeric[A]]
implicitly[NotNumeric[String]] // succeeds
implicitly[NotNumeric[Int]] // fails
and the pseudo code I asked for in the question would look like so (actual code):
// NotFunctor[M[_]] declared above
def notFunctor[M[_] : NotFunctor](m: M[_]) = s"$m is not a functor"
Update: Similar technique applied to implicit conversions:
import scala.language.higherKinds
trait Not[A]
object Not {
implicit def not[V[_], A](a: A) = new Not[V[A]] {}
implicit def notNot[V[_], A <% V[A]](a: A) = new Not[V[A]] {}
}
We can now (e.g.) define a function that will only admit values if their types aren't viewable as Ordered:
def unordered[A <% Not[Ordered[A]]](a: A) = a
In Scala 3 (aka Dotty), the aforementioned tricks no longer work.
The negation of givens is built-in with NotGiven:
def f[T](value: T)(using ev: NotGiven[MyTypeclass[T]])
Examples:
f("ok") // no given instance of MyTypeclass[T] in scope
given MyTypeclass[String] = ... // provide the typeclass
f("bad") // compile error
I was making my way through the Scala playframework tutorial and I came across this snippet of code which had me puzzled:
def newTask = Action { implicit request =>
taskForm.bindFromRequest.fold(
errors => BadRequest(views.html.index(Task.all(), errors)),
label => {
Task.create(label)
Redirect(routes.Application.tasks())
}
)
}
So I decided to investigate and came across this post.
I still don't get it.
What is the difference between this:
implicit def double2Int(d : Double) : Int = d.toInt
and
def double2IntNonImplicit(d : Double) : Int = d.toInt
other than the obvious fact they have different method names.
When should I use implicit and why?
I'll explain the main use cases of implicits below, but for more detail see the relevant chapter of Programming in Scala.
Implicit parameters
The final parameter list on a method can be marked implicit, which means the values will be taken from the context in which they are called. If there is no implicit value of the right type in scope, it will not compile. Since the implicit value must resolve to a single value and to avoid clashes, it's a good idea to make the type specific to its purpose, e.g. don't require your methods to find an implicit Int!
example:
// probably in a library
class Prefixer(val prefix: String)
def addPrefix(s: String)(implicit p: Prefixer) = p.prefix + s
// then probably in your application
implicit val myImplicitPrefixer = new Prefixer("***")
addPrefix("abc") // returns "***abc"
Implicit conversions
When the compiler finds an expression of the wrong type for the context, it will look for an implicit Function value of a type that will allow it to typecheck. So if an A is required and it finds a B, it will look for an implicit value of type B => A in scope (it also checks some other places like in the B and A companion objects, if they exist). Since defs can be "eta-expanded" into Function objects, an implicit def xyz(arg: B): A will do as well.
So the difference between your methods is that the one marked implicit will be inserted for you by the compiler when a Double is found but an Int is required.
implicit def doubleToInt(d: Double) = d.toInt
val x: Int = 42.0
will work the same as
def doubleToInt(d: Double) = d.toInt
val x: Int = doubleToInt(42.0)
In the second we've inserted the conversion manually; in the first the compiler did the same automatically. The conversion is required because of the type annotation on the left hand side.
Regarding your first snippet from Play:
Actions are explained on this page from the Play documentation (see also API docs). You are using
apply(block: (Request[AnyContent]) ⇒ Result): Action[AnyContent]
on the Action object (which is the companion to the trait of the same name).
So we need to supply a Function as the argument, which can be written as a literal in the form
request => ...
In a function literal, the part before the => is a value declaration, and can be marked implicit if you want, just like in any other val declaration. Here, request doesn't have to be marked implicit for this to type check, but by doing so it will be available as an implicit value for any methods that might need it within the function (and of course, it can be used explicitly as well). In this particular case, this has been done because the bindFromRequest method on the Form class requires an implicit Request argument.
WARNING: contains sarcasm judiciously! YMMV...
Luigi's answer is complete and correct. This one is only to extend it a bit with an example of how you can gloriously overuse implicits, as it happens quite often in Scala projects. Actually so often, you can probably even find it in one of the "Best Practice" guides.
object HelloWorld {
case class Text(content: String)
case class Prefix(text: String)
implicit def String2Text(content: String)(implicit prefix: Prefix) = {
Text(prefix.text + " " + content)
}
def printText(text: Text): Unit = {
println(text.content)
}
def main(args: Array[String]): Unit = {
printText("World!")
}
// Best to hide this line somewhere below a pile of completely unrelated code.
// Better yet, import its package from another distant place.
implicit val prefixLOL = Prefix("Hello")
}
In scala implicit works as:
Converter
Parameter value injector
Extension method
There are some uses of Implicit
Implicitly type conversion : It converts the error producing assignment into intended type
val x :String = "1"
val y:Int = x
String is not the sub type of Int , so error happens in line 2. To resolve the error the compiler will look for such a method in the scope which has implicit keyword and takes a String as argument and returns an Int .
so
implicit def z(a:String):Int = 2
val x :String = "1"
val y:Int = x // compiler will use z here like val y:Int=z(x)
println(y) // result 2 & no error!
Implicitly receiver conversion: We generally by receiver call object's properties, eg. methods or variables . So to call any property by a receiver the property must be the member of that receiver's class/object.
class Mahadi{
val haveCar:String ="BMW"
}
class Johnny{
val haveTv:String = "Sony"
}
val mahadi = new Mahadi
mahadi.haveTv // Error happening
Here mahadi.haveTv will produce an error. Because scala compiler will first look for the haveTv property to mahadi receiver. It will not find. Second it will look for a method in scope having implicit keyword which take Mahadi object as argument and returns Johnny object. But it does not have here. So it will create error. But the following is okay.
class Mahadi{
val haveCar:String ="BMW"
}
class Johnny{
val haveTv:String = "Sony"
}
val mahadi = new Mahadi
implicit def z(a:Mahadi):Johnny = new Johnny
mahadi.haveTv // compiler will use z here like new Johnny().haveTv
println(mahadi.haveTv)// result Sony & no error
Implicitly parameter injection: If we call a method and do not pass its parameter value, it will cause an error. The scala compiler works like this - first will try to pass value, but it will get no direct value for the parameter.
def x(a:Int)= a
x // ERROR happening
Second if the parameter has any implicit keyword it will look for any val in the scope which have the same type of value. If not get it will cause error.
def x(implicit a:Int)= a
x // error happening here
To slove this problem compiler will look for a implicit val having the type of Int because the parameter a has implicit keyword.
def x(implicit a:Int)=a
implicit val z:Int =10
x // compiler will use implicit like this x(z)
println(x) // will result 10 & no error.
Another example:
def l(implicit b:Int)
def x(implicit a:Int)= l(a)
we can also write it like-
def x(implicit a:Int)= l
Because l has a implicit parameter and in scope of method x's body, there is an implicit local variable(parameters are local variables) a which is the parameter of x, so in the body of x method the method-signature l's implicit argument value is filed by the x method's local implicit variable(parameter) a implicitly.
So
def x(implicit a:Int)= l
will be in compiler like this
def x(implicit a:Int)= l(a)
Another example:
def c(implicit k:Int):String = k.toString
def x(a:Int => String):String =a
x{
x => c
}
it will cause error, because c in x{x=>c} needs explicitly-value-passing in argument or implicit val in scope.
So we can make the function literal's parameter explicitly implicit when we call the method x
x{
implicit x => c // the compiler will set the parameter of c like this c(x)
}
This has been used in action method of Play-Framework
in view folder of app the template is declared like
#()(implicit requestHreader:RequestHeader)
in controller action is like
def index = Action{
implicit request =>
Ok(views.html.formpage())
}
if you do not mention request parameter as implicit explicitly then you must have been written-
def index = Action{
request =>
Ok(views.html.formpage()(request))
}
Extension Method
Think, we want to add new method with Integer object. The name of the method will be meterToCm,
> 1 .meterToCm
res0 100
to do this we need to create an implicit class within a object/class/trait . This class can not be a case class.
object Extensions{
implicit class MeterToCm(meter:Int){
def meterToCm={
meter*100
}
}
}
Note the implicit class will only take one constructor parameter.
Now import the implicit class in the scope you are wanting to use
import Extensions._
2.meterToCm // result 200
Why and when you should mark the request parameter as implicit:
Some methods that you will make use of in the body of your action have an implicit parameter list like, for example, Form.scala defines a method:
def bindFromRequest()(implicit request: play.api.mvc.Request[_]): Form[T] = { ... }
You don't necessarily notice this as you would just call myForm.bindFromRequest() You don't have to provide the implicit arguments explicitly. No, you leave the compiler to look for any valid candidate object to pass in every time it comes across a method call that requires an instance of the request. Since you do have a request available, all you need to do is to mark it as implicit.
You explicitly mark it as available for implicit use.
You hint the compiler that it's "OK" to use the request object sent in by the Play framework (that we gave the name "request" but could have used just "r" or "req") wherever required, "on the sly".
myForm.bindFromRequest()
see it? it's not there, but it is there!
It just happens without your having to slot it in manually in every place it's needed (but you can pass it explicitly, if you so wish, no matter if it's marked implicit or not):
myForm.bindFromRequest()(request)
Without marking it as implicit, you would have to do the above. Marking it as implicit you don't have to.
When should you mark the request as implicit? You only really need to if you are making use of methods that declare an implicit parameter list expecting an instance of the Request. But to keep it simple, you could just get into the habit of marking the request implicit always. That way you can just write beautiful terse code.
Also, in the above case there should be only one implicit function whose type is double => Int. Otherwise, the compiler gets confused and won't compile properly.
//this won't compile
implicit def doubleToInt(d: Double) = d.toInt
implicit def doubleToIntSecond(d: Double) = d.toInt
val x: Int = 42.0
I had the exact same question as you had and I think I should share how I started to understand it by a few really simple examples (note that it only covers the common use cases).
There are two common use cases in Scala using implicit.
Using it on a variable
Using it on a function
Examples are as follows
Using it on a variable. As you can see, if the implicit keyword is used in the last parameter list, then the closest variable will be used.
// Here I define a class and initiated an instance of this class
case class Person(val name: String)
val charles: Person = Person("Charles")
// Here I define a function
def greeting(words: String)(implicit person: Person) = person match {
case Person(name: String) if name != "" => s"$name, $words"
case _ => "$words"
}
greeting("Good morning") // Charles, Good moring
val charles: Person = Person("")
greeting("Good morning") // Good moring
Using it on a function. As you can see, if the implicit is used on the function, then the closest type conversion method will be used.
val num = 10 // num: Int (of course)
// Here I define a implicit function
implicit def intToString(num: Int) = s"$num -- I am a String now!"
val num = 10 // num: Int (of course). Nothing happens yet.. Compiler believes you want 10 to be an Int
// Util...
val num: String = 10 // Compiler trust you first, and it thinks you have `implicitly` told it that you had a way to covert the type from Int to String, which the function `intToString` can do!
// So num is now actually "10 -- I am a String now!"
// console will print this -> val num: String = 10 -- I am a String now!
Hope this can help.
A very basic example of Implicits in scala.
Implicit parameters:
val value = 10
implicit val multiplier = 3
def multiply(implicit by: Int) = value * by
val result = multiply // implicit parameter wiil be passed here
println(result) // It will print 30 as a result
Note: Here multiplier will be implicitly passed into the function multiply. Missing parameters to the function call are looked up by type in the current scope meaning that code will not compile if there is no implicit variable of type Int in the scope.
Implicit conversions:
implicit def convert(a: Double): Int = a.toInt
val res = multiply(2.0) // Type conversions with implicit functions
println(res) // It will print 20 as a result
Note: When we call multiply function passing a double value, the compiler will try to find the conversion implicit function in the current scope, which converts Int to Double (As function multiply accept Int parameter). If there is no implicit convert function then the compiler will not compile the code.
I'm trying to get a minimal form of dependent types in Scala. If I have
class A[T <: Int]
val x: Int = 7
I can
val a = new A[x.type]
Now is it possible to recover x from its singleton x.type?
Or, if that's not possible, is it possible to associate a stable identifier with a type somehow, and then extract it?
No, you can't recover x from x.type because of JVM type erasure. For example, how would this be implemented?
def f[A]: A = ???
f[x.type]
At the JVM bytecode level, there's no way that f can find value x: A given A = x.type because it doesn't have anything to work with: all type parameters are lost at run-time, and anyway, the x value is not available on f's parameter stack.
For the same reason, to get a stable-ID of a type, you'd have to reify it as a Manifest value. But when I tried, I get a strange result,
def f[A : Manifest] = implicitly[Manifest[A]]
val x = "hi"
val y = "ho"
println(f[x.type]) // hi.type
println(f[y.type]) // ho.type
f[x.type] == f[y.type] // true !?
I'm not sure why these two type manifests are equal---they even have different toString representations. Could this be a Scala bug? Update: According to the ScalaDoc, The type-relation operators <:< and =:= should be considered approximations only, as there are numerous aspects of type conformance which are not yet adequately represented in manifests.
To summarize, the reification of type information into run-time values doesn't happen automatically on the JVM. Scala's Manifest is supposed to fill the gap, but I guess it doesn't work with dependent types.
To answer your second question, "associating a stable identifier to a type", one way to do it is to use type classes. Let's say I want to associate a string description to types, I can do it as follows:
trait Tag[A] {
val desc : String
}
implicit object StringTag extends Tag[String] {
val desc = "character string"
}
implicit object IntTag extends Tag[Int] {
val desc = "32-bit integer"
}
Now, to recover such tags, enter the implicit magic:
def printTag[T : Tag] {
val tag = implicitly[Tag[T]]
println("Type is described as : " + tag.desc)
}
E.g:
printTag[String] // prints "Type is described as : character string"
printTag[Double] // compile-time error: no implicit value found of type Tag[Double]
You can even generate tags as needed, using implicit functions. For instance:
implicit def liftTagToList[T : Tag] = new Tag[List[T]] {
val underlying = implicitly[Tag[T]].desc
val desc = "list of " + underlying + "s"
}
I can now do the following:
// prints "Type is described as : list of character strings"
printTag[List[String]]
and even:
// prints "Type is described as : list of list of character stringss"
printTag[List[List[String]]]
Please forgive the pluralization.