Is there any way by which cons can be implemented in Common LISP using list, append, first, rest etc?
In the following code
(defun my_list (&rest arguments)
`(,#arguments) ; Line 1
)
What does complete line 1 mean ?
First question: No, because cons is the building block for list and append, not the other way around. It is like trying to construct a brick out of houses.
Second question: The backquote syntax is explained in the CLHS (http://www.ai.mit.edu/projects/iiip/doc/CommonLISP/HyperSpec/Body/sec_2-4-6.html).
Stylistic comments:
It is spelt "Common Lisp".
Do not use underscores to separate parts of names, but hyphens: my-list.
Do not let parentheses dangle around. Your snippet should be formatted like this:
(defun my-list (&rest arguments)
`(,#arguments)) ; Line 1
Using the backquote syntax outside of macros is usually not a good idea. In this case, it is completely superfluous:
(defun my-list (&rest arguments)
arguments)
Yes, you could in theory define cons in terms of list and append, like so:
(defun cons (car cdr) (append (list car) cdr))
I have the answer for the second question:
for the ,:
if my_symbol = 1
`(my_symbol 2 3) = (my_symbol 2 3), but with the ,:
`(,my_symbol 2 3) = (1 2 3)
The , evaluates the next symbol in a ` statement
Now for the # (which is a symbol, so it needs the , to be activated)
`(,#('a 'b 'c) ('d 'e 'f)) = ('a 'b 'c ('d 'e 'f) )
`(,#('a 'b 'c) ,#('d 'e 'f) ) = ('a 'b 'c 'd 'e 'f)
I hope these examples could help.
So the line 1 is simply extracting the arguments from a list and putting them into another one.
How about this?
(defun cons (a b) '(a . b))
Or, if you desperately need to use lists...
(defun cons (a b) (first (list '(a . b))))
Related
In Common Lisp, given that "a" is simply a character, what is the difference between #\a, 'a #'a?
My question comes from the tutorialspoint.com tutorial on Lisp. At one point the tutorial introduces:
; a character array with all initial elements set to a
; is a string actually
(write(make-array 10 :element-type 'character :initial-element #\a))
(terpri)
; a two dimensional array with initial values a
(setq myarray (make-array '(2 2) :initial-element 'a :adjustable t))
(write myarray)
(terpri)
With the output:
"aaaaaaaaaa"
#2A((A A) (A A))
#' is not included in this example but I'm including it in the question because it can be confusing as well. ๐
Thank you very much! ๐
To start, a is not "simply a character." The Lisp reader parses #\a as the character literal a, which is an object in Common Lisp. Note that #\a and #\A are different character objects.
When the Lisp reader encounters a single quote, the expression following the single quote is not evaluated. Specifically, 'a is treated as (quote a), where quote returns its argument unevaluated. Now, a is a symbol, so 'a evaluates to that symbol. But the Lisp reader upcases most characters it reads by default, so 'a really evaluates to the symbol A. The good news is that whether you type a or A, the Lisp reader will read A (unless you mess with the readtable), and both 'a and 'A evaluate to the symbol A.
When the Lisp reader encounters #'a, the entire expression is treated as (function a), which when evaluated returns the function associated with the name a. But, note that it is an error to use function, and by extension #', on an identifier that does not denote a function.
To clarify this last part a bit, consider the following REPL interaction:
CL-USER> (defvar a 1)
A
CL-USER> a
1
CL-USER> #'a
The function COMMON-LISP-USER::A is undefined.
[Condition of type UNDEFINED-FUNCTION]
Here the variable a is defined and given the value 1, but when we try to access the function denoted by a we get an error message because there is no such function. Continuing:
; Evaluation aborted on #<UNDEFINED-FUNCTION A {1002DDC303}>.
CL-USER> (defun a (x) x)
A
CL-USER> (a 'b)
B
CL-USER> a
1
CL-USER> #'a
#<FUNCTION A>
Now we have defined a function named a that simply returns its argument. You can see that when we call a with an argument 'b we get the expected result: (a 'b) --> b. But, then when we evaluate a alone we still get 1. Symbols in Common Lisp are objects that have, among other cells, value cells and function cells. After the above interaction, the symbol a now has 1 in its value cell, and it has the function we have defined in its function cell. When the symbol a is evaluated the value cell is accessed, but when (function a) or #'a is evaluated, the function cell is accessed. You can see above that when #'a is evaluated, the function we defined is returned, and the REPL prints #<FUNCTION A> to show this.
As an aside, I wouldn't recommend using Tutorialspoint to learn Common Lisp. Glancing over the site, right away I see this:
LISP expressions are case-insensitive, cos 45 or COS 45 are same.
This is just wrong. And, Lisp is not written in all-caps. None of this inspires faith. Instead, find a good book. There are some recommendations on the common-lisp tag-info page.
#\
This is to introduce a character.
CL-USER> #\a
#\a
CL-USER> (character 'a)
#\A
CL-USER> (character "a")
#\a
'
This is quote, to quote and not evaluate things and construct object literals.
CL-USER> a
=> error: the variable a is unbound.
CL-USER> 'a
A
CL-USER> (inspect 'a)
The object is a SYMBOL.
0. Name: "A"
1. Package: #<PACKAGE "COMMON-LISP-USER">
2. Value: "unbound"
3. Function: "unbound"
4. Plist: NIL
> q
CL-USER> (equal (list 1 2) (quote (1 2))) ;; aka '(1 2)
T ;; but watch out with object literals constructed with quote, prefer constructor functions.
and #'
This is sharpsign-quote to reference a function.
CL-USER> #'a
=> error: The function COMMON-LISP-USER::A is undefined.
CL-USER> (defun a () (print "hello A"))
A
CL-USER> (a)
"hello A"
"hello A"
CL-USER> #'a
#<FUNCTION A>
CL-USER> (function a)
#<FUNCTION A>
One can ask Lisp to describe the data objects you've mentioned.
If we look at the expressions:
CL-USER 13 > (dolist (object (list '#\a ''a '#'a))
(terpri)
(describe object)
(terpri))
#\a is a CHARACTER
Name "Latin-Small-Letter-A"
Code 97
(QUOTE A) is a LIST
0 QUOTE
1 A
(FUNCTION A) is a LIST
0 FUNCTION
1 A
NIL
If we look at the evaluated expressions:
CL-USER 5 > (dolist (object (list #\a 'a #'a))
(terpri)
(describe object)
(terpri))
#\a is a CHARACTER
Name "Latin-Small-Letter-A"
Code 97
A is a SYMBOL
NAME "A"
VALUE #<unbound value>
FUNCTION #<interpreted function A 422005BD54>
PLIST NIL
PACKAGE #<The COMMON-LISP-USER package, 73/256 internal, 0/4 external>
#<interpreted function A 422005BD54> is a TYPE::INTERPRETED-FUNCTION
CODE (LAMBDA (B)
A)
A S-Expression is considered as a Number, a String, a Symbol, a Bool, an Image, empty or a List-of S-Expressions.
How do I achieve to make racket eval my S-Expression?
'(1 2 (+ 2 1))) should yield (list 1 2 3).
I want to do this with Beginning Student Language with List-Abbreviations.
I have no idea how to achieve this, how do I know when a plus sign is coming up?
Probably easy one for you guys here...
(define (eval s)
(cond
[(...) ...]
[(...) ...]
[else ...]))
How does lisp quote work internally?
For example:
(quote (+ 1 (* 1 2)) )
seems to be equivalent to
(list '+ 1 (list '* 1 2))
which means it is some how symbolizing the Head values recursively. Is this function a built in?
Run (equal (quote (+ 1 (* 1 2))) (list '+ 1 (list '* 1 2))) if you don't believe me.
How does it work?
quote is really really simple to implement. It does mostly nothing. The quote special operator just returns the enclosed object like it is. Nothing more. No evaluation. The object is not changed in any way.
Evaluation of quoted forms
Probably a good time to read McCarthy, from 1960:
Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I
Pages 16/17 explain evaluation with eval. Here:
eq [car [e]; QUOTE] โ cadr [e];
or in s-expression notation:
(cond
...
((eq (car e) 'quote)
(cadr e))
...)
Above code implements the evaluation rule for QUOTE: If the expression is a list and the first element of the list is the symbol QUOTE, then return the second element of the list.
Equivalence of a quoted list with a list created by LIST
(equal (quote (+ 1 (* 1 2)))
(list '+ 1 (list '* 1 2)))
The result is T. This means that both result lists are structurally equivalent.
(eq (quote (+ 1 (* 1 2)))
(list '+ 1 (list '* 1 2)))
The result is NIL. This means that the first cons cell of the linked lists are not the same objects. EQ tests whether we really have the same cons cell object.
QUOTE returns a literal data object. The consequences of modifying this object is undefined. So, don't do it.
LIST returns a new freshly consed list each time it is called. The fresh new list will not share any cons cells with any earlier allocated list.
So the main difference is that QUOTE is a built-in operator, which returns literal and unevaluated data. Whereas LIST is a function which creates a new,fresh list with its arguments as contents.
See the effects with respect to EQ and EQUAL:
CL-USER 6 >
(flet ((foo () (quote (+ 1 (* 1 2))))
(bar () (list '+ 1 (list '* 1 2))))
(list (list :eq-foo-foo (eq (foo) (foo)))
(list :eq-foo-bar (eq (foo) (bar)))
(list :eq-bar-bar (eq (foo) (bar)))
(list :equal-foo-foo (equal (foo) (foo)))
(list :equal-foo-bar (equal (foo) (bar)))
(list :equal-bar-bar (equal (foo) (bar)))))
((:EQ-FOO-FOO T)
(:EQ-FOO-BAR NIL)
(:EQ-BAR-BAR NIL)
(:EQUAL-FOO-FOO T)
(:EQUAL-FOO-BAR T)
(:EQUAL-BAR-BAR T))
is quote a function?
quote can't be a function, since it returns its enclosed data unevaluated. Thus it is a special evaluation rule.
If quote were a function, it's arguments were evaluated. But that's exactly what is NOT what quote is supposed to do.
why does Lisp need QUOTE?
Lisp usually uses s-expressions to write Lisp code. So s-expressions have a both purpose to denote data and we use it to write programs. In a Lisp program lists are used for function calls, macro forms and special forms. symbols are used as variables:
(+ n 42)
Here (+ n 42) is a list and n is a symbol. But we also want to use lists as data in our programs and we want to use symbols as data. Thus we have to quote them, so that Lisp will not see them as programs, but as data:
(append '(+ n) '(42)) evaluates to (+ n 42)
Thus in a Lisp program, lists and variables are by default part of the language elements, for example as function calls and variables. If we want to use lists and symbols as literal data, we have to quote them, to prevent the evaluator treating them as Lisp code to evaluate.
quote does nothing more than return its argument unevaluated. But what is an unevaluated argument?
When a Lisp program is defined, it is either read from textual source into s-expression form or constructed directly in terms of s-expressions. A macro would be an example of generating s-expressions. Either way there is a data structure comprising (mostly) symbols and conses that represents the program.
Most Lisp expressions will call upon evaluation and compilation machinery to interpret this data structure as terms in a program. quote is treated specially and passed these uninterpreted symbols and conses as its argument. In short, quote does almost nothing - the value it returns already exists and is simply passed through.
You can observe the difference between passing through and fresh construction by using eq to test the identity of the return value of quote:
(defun f () '(1 2))
(defun g () (list 1 2))
(eq (f) (f)) => T
(eq (g) (g)) => NIL
As you can see, quote returns the same conses each time through.
I'm trying to implement the Towers of Hanoi.I'm not printing out anything between my recursive calls yet, but I keep getting an error saying
'('(LIST) 'NIL 'NIL) should be a lambda expression
I've read that the reason this happens is because of a problem with the parenthesis, however I cannot seem to find what my problem is. I think it's happening in the pass-list function when I am trying to call the hanoi function. My code:
(defun pass-list(list)
(hanoi('('(list)'()'())))
)
(defun hanoi ('('(1) '(2) '(3)))
(hanoi '('(cdr 1) '(cons(car 1) 2) '(3)))
(hanoi '('(cons(car 3)1) '(2)'(cdr 3)))
)
This code has many syntax problems; there are erroneous quotes all over the place, and it looks like you're trying to use numbers as variables, which will not work. The source of the particular error message that you mentioned comes from
(hanoi('('(list)'()'())))
First, understand that the quotes in 'x and '(a b c) are shorthand for the forms (quote x) and (quote (a b c)), and that (quote anything) is the syntax for getting anything, without anything being evaluated. So '(1 2 3) gives you the list (1 2 3), and '1 gives you 1. quote is just a symbol though, and can be present in other lists, so '('(list)'()'()) is the same as (quote ((quote (list)) (quote ()) (quote ()))) which evaluates to the list ((quote (list)) (quote ()) (quote ())). Since () can also be written nil (or NIL), this last is the same as ('(list) 'NIL 'NIL). In Common Lisp, function calls look like
(function arg1 arg2 ...)
where each argi is a form, and function is either a symbol (e.g., list, hanoi, car) or a list, in which case it must be a lambda expression, e.g., (lambda (x) (+ x x)). So, in your line
(hanoi('('(list)'()'())))
we have a function call. function is hanoi, and arg1 is ('('(list)'()'())). But how will this arg1 be evaluated? Well, it's a list, which means it's a function application. What's the function part? It's
'('(list)'()'())
which is the same as
'('(list 'NIL 'NIL))
But as I just said, the only kind of list that can be function is a lambda expression. This clearly isn't a lambda expression, so you get the error that you're seeing.
I can't be sure, but it looks like you were aiming for something like the following. The line marked with ** is sort of problematic, because you're calling hanoi with some arguments, and when it returns (if it ever returns; it seems to me like you'd recurse forever in this case), you don't do anything with the result. It's ignored, and then you go onto the third line.
(defun pass-list(list)
(hanoi (list list) '() '()))
(defun hanoi (a b c)
(hanoi (rest a) (cons (first a) b) c) ; **
(hanoi (cons (first c) a) b (rest c)))
If hanoi is supposed to take a single list as an argument, and that list is supposed to contain three lists (I'm not sure why you'd do it that way instead of having hanoi take just three arguments, but that's a different question, I suppose), it's easy enough to modify; just take an argument abc and extract the first, second, and third lists from it, and pass a single list to hanoi on the recursive call:
(defun hanoi (abc)
(let ((a (first abc))
(b (second abc))
(c (third abc)))
(hanoi (list (rest a) (cons (first a) b) c))
(hanoi (list (cons (first c) a) b (rest c)))))
I'd actually probably use destructuring-bind here to simplify getting a, b, and c out of abc:
(defun hanoi (abc)
(destructuring-bind (a b c) abc
(hanoi (list (rest a) (cons (first a) b) c))
(hanoi (list (cons (first c) a) b (rest c)))))
I have a list of elements '(a b c) and I want to find if (true or false) x is in it, where x can be 'a or 'd, for instance. Is there a built in function for this?
If you need to compare using one of the build in equivalence operators, you can use memq, memv, or member, depending on whether you want to look for equality using eq?, eqv?, or equal?, respectively.
> (memq 'a '(a b c))
'(a b c)
> (memq 'b '(a b c))
'(b c)
> (memq 'x '(a b c))
#f
As you can see, these functions return the sublist starting at the first matching element if they find an element. This is because if you are searching a list that may contain booleans, you need to be able to distinguish the case of finding a #f from the case of not finding the element you are looking for. A list is a true value (the only false value in Scheme is #f) so you can use the result of memq, memv, or member in any context expecting a boolean, such as an if, cond, and, or or expression.
> (if (memq 'a '(a b c))
"It's there! :)"
"It's not... :(")
"It's there! :)"
What is the difference between the three different functions? It's based on which equivalence function they use for comparison. eq? (and thus memq) tests if two objects are the same underlying object; it is basically equivalent to a pointer comparison (or direct value comparison in the case of integers). Thus, two strings or lists that look the same may not be eq?, because they are stored in different locations in memory. equal? (and thus member?) performs a deep comparison on lists and strings, and so basically any two items that print the same will be equal?. eqv? is like eq? for almost anything but numbers; for numbers, two numbers that are numerically equivalent will always be eqv?, but they may not be eq? (this is because of bignums and rational numbers, which may be stored in ways such that they won't be eq?)
> (eq? 'a 'a)
#t
> (eq? 'a 'b)
#f
> (eq? (list 'a 'b 'c) (list 'a 'b 'c))
#f
> (equal? (list 'a 'b 'c) (list 'a 'b 'c))
#t
> (eqv? (+ 1/2 1/3) (+ 1/2 1/3))
#t
(Note that some behavior of the functions is undefined by the specification, and thus may differ from implementation to implementation; I have included examples that should work in any R5RS compatible Scheme that implements exact rational numbers)
If you need to search for an item in a list using an equivalence predicate different than one of the built in ones, then you may want find or find-tail from SRFI-1:
> (find-tail? (lambda (x) (> x 3)) '(1 2 3 4 5 6))
'(4 5 6)
Here's one way:
> (cond ((member 'a '(a b c)) '#t) (else '#f))
#t
> (cond ((member 'd '(a b c)) '#t) (else '#f))
#f
member returns everything starting from where the element is, or #f. A cond is used to convert this to true or false.
You are looking for "find"
Basics - The simplest case is just (find Entry List), usually used as a predicate: "is Entry in List?". If it succeeds in finding the element in question, it returns the first matching element instead of just "t". (Taken from second link.)
http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node145.html
-or-
http://www.apl.jhu.edu/~hall/Lisp-Notes/Higher-Order.html
I don't know if there is a built in function, but you can create one:
(define (occurrence x lst)
(if (null? lst) 0
(if (equal? x (car lst)) (+ 1 (occurrence x (cdr lst)))
(occurrence x (cdr lst))
)
)
)
แปฒou will get in return the number of occurrences of x in the list. you can extend it with true or false too.
(define (member? x list)
(cond ((null? list) #f)
((equal? x (car list)) #t)
(else (member? x (cdr list)))))
The procedure return #t (true) or #f (false)
(member? 10 '(4 2 3))
output is #f