Does HATEOAS imply that query strings are not RESTful? - rest

Does the HATEOAS (hypermedia as the engine of app state) recommendation imply that query strings are not RESTful?
Edit: It was suggested below that query strings may not have much to do with state and that therefore the question is puzzling. I would suggest that it doesn't make sense for the URI to have a query string unless the client were filling in arguments. If the client is filling arguments then it is adulterating the server-supplied URI and I wonder if this violates the RESTful principle.
Edit 2: I realize that the query string seems harmless if the client treats it as opaque (and the query string might be a legacy and therefore convenient). However, in one of the answers below Roy Fielding is quoted as saying that the URI should be taken to be transparent. If it is transparent then I believe adulterating is encouraged and that seems to dilute the HATEOAS principle. Is such dilution still consistent with HATEOAS? This raises the question of whether REST is calling for the tight coupling that URI building seems to be.
Update At this REST tutorial http://rest.elkstein.org/ it is suggested that URI building is bad design and is not RESTful. It also iterates what was said by #zoul in the accepted answer.
For example, a "product list" request could return an ID per product, and the specification says that you should use http://www.acme.com/product/PRODUCT_ID to get additional details. That's bad design. Rather, the response should include the actual URL with each item: http://www.acme.com/product/001263, etc. Yes, this means that the output is larger. But it also means that you can easily direct clients to new URLs as needed
If a human is looking at this list and does not want what he/she can see, there might be a "previous 10 items" and a "next 10 items" button, however, if there is no human, but rather a client program, this aspect of REST seems a little weird because of all the "http://www" that the client program may have no use for.

In Roy Fielding's own words (4th bullet point in the article):
A REST API must not define fixed resource names or hierarchies (an obvious coupling of client and server). Servers must have the freedom to control their own namespace. Instead, allow servers to instruct clients on how to construct appropriate URIs, such as is done in HTML forms and URI templates, by defining those instructions within media types and link relations.
In other words, as long as the clients don't get the pieces they need to generate URIs in out-of-band information, HATEAOS is not violated.
Note that URI templates can be used in URIs without query strings as well:
http://example.com/dictionary/{term}
So the question is more about whether it is RESTful to allow the client to construct URLs than whether it is RESTful to use query strings.
Notice how the amount of information served to the client in the example above is exactly equivalent to serving an exhaustive list of all the possible terms, but is a lot more efficient from a bandwidth point of view.
It also allows the client to search the dictionary while respecting HATEAOS, which would be impossible without the in-band instructions. I am quite confident that Roy Fielding is not promoting a Web without any search feature...
About your third comment, I think Roy Fielding is encouraging API designers to have "transparent" URIs as an extra feature on top of HATEAOS. I don't interpret his quote in zoul's answer as a statement that clients would use "common sense" to navigate an API with clear URIs. They would still use in-band instructions (like forms and URI templates). But this does not mean that transparent URIs are not way better than dark, surprising, opaque URIs.
In fact, transparent URIs provide added value to an API (debugging is one use case I can think of where having transparent URIs is invaluable).
For more info about URI templates, you can have a look at RFC6570.

My take on it is that REST itself says nothing about whether URI are opaque or transparent but that REST app should not depend on the client to construct URI that the server hasn't already told it about. There are a variety of ways for the server to do this: for example, a collection which may include links to its members, or an HTML form with the GET method will obviously cause a URI with params to be created client-side and fetched, or there are at least a couple of proposed standards for URI templates. The important thing for REST is that the description of valid URI should be defined somehow by the server in the responses it gives to clients, and not in some out-of-band API documentation
URI transparency is a good thing in the same way as transparency anywhere is a good thing - it promotes and permits novel and unplanned uses for resources beyond what the designer had originally imagined - but (at least in my understanding) nice URIs are not required to describe an interface as RESTful

I would suggest that it doesn't make
sense for the URI to have a query
string unless the client were filling
in arguments.
That does not seem true to me. If you ask server for a handful of photos, it’s perfectly valid for the server to return something like this:
<photos>
<photo url="http://somewhere/photo?id=1"/>
<photo url="http://somewhere/photo?id=2"/>
</photos>
You could use /photo/id/xx path instead, but that’s not the point. These URLs are usable even without the client changing them. As for your second point:
If the client is filling arguments
then it is adulterating the
server-supplied URI and I wonder if
this violates the RESTful principle.
I guess this is the heart of your question. And I don’t think you have to treat URLs as opaque identifiers, see this quote by Roy Fielding himself:
REST does not require that a URI be
opaque. The only place where the word
opaque occurs in my dissertation is
where I complain about the opaqueness
of cookies. In fact, RESTful
applications are, at all times,
encouraged to use human-meaningful,
hierarchical identifiers in order to
maximize the serendipitous use of the
information beyond what is anticipated
by the original application.

I don’t see what query strings have to do with state tracking. The point of the HATEOAS principle is to refrain from tracking the state on the client, from “cheating” and going to “known” URLs for data. Whether those URLs have query strings or not seems irrelevant to me.
Oh. Maybe you’re interested in something like search URLs where a certain part of the URL has to change according to search criteria? Because such URLs would seemingly have to be known beforehand, thus representing the out-of-band information that we seek to eliminate with REST? I think that this can be solved using URL templates. Example:
client -> server
GET /items
server -> client
/* …whatever, an item index… */
<search by="color">http://somewhere/items/colored/{#color_id}</search>
This way you don’t need no a priori URL knowledge to search and you should be true to the hypermedia state tracking principle. But my grasp of REST is very weak, I’m answering mainly to sort things in my head and to get feedback. Surely there’s a better answer.

No HATEOAS does not mean query strings are not RESTful. In fact the exact opposite can be the case.
Consider the common login scenario where the user tries to access a secured resource and they are sent to a login screen. The URL to the login screen often contains a query string parameter named redirectUrl, which tells the login screen where to return to after a successful login. This is an example of using URIs to maintain client state.
Here is another example of storing client state in the URL: http://yuml.me/diagram/scruffy/class/[Company]<>-1>[Location], [Location]+->[Point]

To follow-on from what Darrel has said, you do not need to alter the URL to include a second URL.
For cookie-based authentication you could return the login form within the body of the 401 response, with an empty form action, and use unique field names that can be POSTed to and processed by every resource. That way you avoid the need for a redirect entirely. If you can't have every resource process log-in requests, you can make the 401 form action point to a log-in action resource and put the redirect URL in a hidden field. Either way, you avoid having an ugly URL-in-a-URL, and the first way avoids the need for both an RPC log-in action and a redirect, keeping all the interaction focused on the resource.

Related

REST API design for a "reset to defaults" operation

I'm surprised to find so little mention of this dilemma online, and it makes me wonder if I'm totally missing something.
Assume I have a singleton resource called Settings. It is created on init/install of my web server, but certain users can modify it via a REST API, lets say /settings is my URI. I have a GET operation to retrieve the settings (as JSON), and a PATCH operation to set one or more of its values.
Now, I would like to let the user reset this resource (or maybe individual properties of it) to default - the default being "whatever value was used on init", before any PATCH calls were done. I can't seem to find any "best practice" approach for this, but here are the ones I have come up with:
Use a DELETE operation on the resource. It is after all idempotent, and its pretty clear (to me). But since the URI will still exist after DELETE, meaning the resource was neither removed nor moved to an inaccessible location, this contradicts the RESTful definition of DELETE.
Use a POST to a dedicated endpoint such as /settings/reset - I really dislike this one because its the most blatantly non-RESTful, as the verb is in the URI
Use the same PATCH operation, passing some stand-in for "default" such as a null value. The issue I have with this one is the outcome of the operation is different from the input (I set a property to null, then I get it and it has a string value)
Create a separate endpoint to GET the defaults, such as /setings/defaults, and then use the response in a PATCH to set to those values. This doesn't seem to contradict REST in any way, but it does require 2 API calls for seemingly one simple operation.
If one of the above is considered the best practice, or if there is one I haven't listed above, I'd love to hear about it.
Edit:
My specific project has some attributes that simplify this question, but I didn't mention them originally because my aim was for this thread to be used as a reference for anyone in the future trying to solve the same problem. I'd like to make sure this discussion is generic enough to be useful to others, but specific enough to also be useful to me. For that, I will append the following.
In my case, I am designing APIs for an existing product. It has a web interface for the average user, but also a REST (ish) API intended to meet the needs of developers who need to automate certain tasks with said product. In this oversimplified example, I might have the product deployed to a test environment on which i run various automated tests that modify the /settings and would like to run a cleanup script that resets /settings back to normal when I'm done.
The product is not SaaS (yet), and the APIs are not public (as in, anyone on the web can access them freely) - so the audience and thus the potential types of "clients" I may encounter is rather small - developers who use my product, that is deployed in their private data center or AWS EC2 machines, and need to write a script in whatever language to automate some task rather than doing it via UI.
What that means is that some technical considerations like caching are relevant. Human user considerations, like how consistent the API design is across various resources, and how easy it is to learn, are also relevant. But "can some 3rd party crawler identify the next actions it can perform from a given state" isn't so relevant (which is why we don't implement HATEOAS, or the OPTIONS method at all)
Let's discuss your mentioned options first:
1: DELETE does not necessarily need to delete or remove the state contained in the resource targeted by the URI. It just requires that the mapping of target URI to the resource is removed, which means that a consecutive request on the same URI should not return the state of the resource further, if no other operation was performed on that URI in the meantime. As you want to reuse the URI pointing to the client's settings resource, this is probably not the correct approch.
2: REST doesn't care about the spelling of the URI as long as it is valid according to RFC3986. There is no such thing as RESTful or RESTless URI. The URI as a whole is a pointer to a resource and a client should refrain from extracting knowledge of it by parsing and interpreting it. Client and server should though make use of link relation names URIs are attached to. This way URIs can be changed anytime and client will remain to be able to interact with the service further. The presented URI however leaves an RPC kind of smell, which an automated client is totally unaware of.
3: PATCH is actually pretty-similar to patching done by code versioning tools. Here a client should precalculate the steps needed to transform a source document to its desired form and contain these instructions into a so called patch document. If this patch document is applied by someone with the state of a document that matches the version used by the patch document, the changes should be applied correctly. In any other cases the outcome is uncertain. While application/json-patch+json is very similar to the philosophy on a patch-document containing separate instructions, application/merge-patch+json has a slightly different take on it by defining default rules (nulling out a property will lead to a removal, including a property will lead to its adding or update and leaving out properties will ignore these properties in the original document)
4: In this sense first retrieving the latest state from a resource and locally updating it/calculating the changes and then send the outcome to the server is probably the best approach of the ones listed. Here you should make use of conditional requests to guarantee that the changes are only applied on the version you recently downloaded and prevent issues by ruling out any intermediary changes done to that resource.
Basically, in a REST architecture the server offers a bunch of choices to a client that based on his task will chose one of the options and issue a request to the attached URI. Usually, the client is taught everything it needs to know by the server via form representations such as HTML forms, HAL forms or ION.
In such an environment settings is, as you mentioned, a valid resource on its own, so is also a default settings resource. So, in order to allow a client to reset his settings it is just a matter of "copying" the content of the default settings resource to the target settings resource. If you want to be WebDAV compliant, which is just an extension of HTTP, you could use the COPY HTTP operation (also see other registered HTTP operations at IANA). For plain HTTP clients though you might need a different approach so that any arbitrary HTTP clients will be able to reset settings to a desired default one.
How a server wants a client to perform that request can be taught via above mentioned form support. A very simplistic approach on the Web would be to send the client a HTML page with the settings pre-filled into the HTML form, maybe also allow the user to tweak his settings to his wishes beforehand, and then click a submit button to send the request to the URI present in the action attribute of the form, which can be any URI the server wants. As HTML only supports POST and GET in forms, on the Web you are restricted to POST.
One might think that just sending a payload containing the URI of the settings resource to reset and optionally the URI to the default settings to a dedicated endpoint via POST is enough and then let it perform its magic to reset the state to the default one. However, this approach does bypass caches and might let them believe that the old state is still valid. Caching in HTTP works as such that the de-facto URI of a resource is used as key and any non-safe operations performed on that URI will lead to an eviction of that stored content so that any consecutive requests would directly go to the server instead of being served by the cache instead. As you send the unsafe POSTrequest to a dedicated resource (or endpoint in terms of RPC) you miss out on the capability to inform the cache about the modification of the actual settings resource.
As REST is just a generalization of the interaction model used on the human Web, it is no miracle that the same concepts used on the Web also apply onto the application domain level. While you can use HTML here as well, JSON-based formats such as application/hal+json or the above mentioned HAL forms or ION formats are probably more popular. In general, the more media-type your service is able to support, the more likely the server will be to server a multitude of clients.
In contrast to the human Web, where images, buttons and further stuff provide an affordance of the respective control to a user, arbitrary clients, especially automated ones, usually don't coop with such affordances good. As such other ways to hint a client on the purpose of a URI or control element need to be provided, such as link relation names. While <<, <, >, >> may be used on a HTML page link to indicate first, previous, next and last elements in a collection, link relation here provide first, prev, next and last as alternatives. Such link relations should of course be either registered with IANA or at least follow the Web linking extension approach. A client looking up the URI on a prev relation will know the purpose of the URI as well as still be able to interact with the server if the URI ever changes. This is in essence also what HATEOAS is all about, using given controls to navigate the application though the state machine offered by the server.
Some general rules of thumb in designing applications for REST architectures are:
Design the interaction as if you'd interact with a Web page on the human Web, or more formally as a state machine or domain application protocol, as Jim Webber termed it, a client can run through
Let servers teach clients on how requests need to look like via support of different form types
APIs shouldn't use typed resources but instead rely on content type negotiation
The more media type your API or client supports the more likely it will be to interact with other peers
Long story short, in summary, a very basic approach is to offer a client a pre-filled form with all the data that makes up the default settings. The target URI of the action property targets the actual resource and thus also informs caches about the modification. This approach is on top also future-proof that clients will be served automatically with the new structure and properties a resource supports.
... so the audience and thus the potential types of "clients" I may encounter is rather small - developers who use my product, that is deployed in their private data center or AWS EC2 machines, and need to write a script in whatever language to automate some task rather than doing it via UI.
REST in the sense of Fielding's architectural style shines when there are a multitude of different clients interacting with your application and when there needs to be support for future evolution inherently integrated into the design. REST just gives you the flexibility to add new features down the road and well-behaved REST clients will just pick them up and continue. If you are either only interacting with a very limited set of clients, especially ones under your control, of if the likelihood of future changes are very small, REST might be overkill and not justify the additional overhead caused by the careful desing and implementation.
... some technical considerations like caching are relevant. Human user considerations, like how consistent the API design is across various resources, and how easy it is to learn, are also relevant. But "can some 3rd party crawler identify the next actions it can perform from a given state" isn't so relevant ...
The term API design already indicates that a more RPC-like approach is desired where certain operations are exposed user can invoke to perform some tasks. This is all fine as long as you don't call it REST API from Fielding's standpoint. The plain truth here is that there are hardly any applications/systems out there that really follow the REST architectural style but there are tons of "bad examples" who misuse the term REST and therefore indicate a wrong picture of the REST architecture, its purpose as well as its benefits and weaknesses. This is to some part a problem caused by people not reading Fielding's thesis (carefully) and partly due to the overall perference towards pragmatism and using/implementing shortcuts to get the job done ASAP.
In regards to the pragmatic take on "REST" it is hard to give an exact answer as everyone seems to understand different things about it. Most of those APIs rely on external documentation anyway, such as Swagger, OpenAPI and what not and here the URI seems to be the thing to give developers clue about the purpose. So a URI ending with .../settings/reset should be clear to most of the developers. Whether the URI has an RPC-smell to it or whether or not to follow the semantics of the respective HTTP operations, i.e. partial PUT or payloads within GET, is your design choice which you should document.
It is okay to use POST
POST serves many useful purposes in HTTP, including the general purpose of “this action isn’t worth standardizing.”
POST /settings HTTP/x.y
Content-Type: text/plain
Please restore the default settings
On the web, you'd be most likely to see this as a result of submitting a form; that form might be embedded within the representation of the /settings resource, or it might live in a separate document (that would depend on considerations like caching). In that setting, the payload of the request might change:
POST /settings HTTP/x.y
Content-Type: application/x-www-form-urlencoded
action=restoreDefaults
On the other hand: if the semantics of this message were worth standardizing (ie: if many resources on the web should be expected to understand "restore defaults" the same way), then you would instead register a definition for a new method token, pushing it through the standardization process and promoting adoption.
So it would be in this definition that we would specify, for instance, that the semantics of the method are idempotent but not safe, and also define any new headers that we might need.
there is a bit in it that conflicts with this idea of using POST to reset "The only thing REST requires of methods is that they be uniformly defined for all resources". If most of my resources are typical CRUD collections, where it is universally accepted that POST will create a new resource of a given type
There's a tension here that you should pay attention to:
The reference application for the REST architectural style is the world wide web.
The only unsafe method supported by HTML forms was POST
The Web was catastrophically successful
One of the ideas that powered this is that the interface was uniform -- a browser doesn't have to know if some identifier refers to a "collection resource" or a "member resource" or a document or an image or whatever. Neither do intermediate components like caches and reverse proxies. Everybody shares the same understanding of the self descriptive messages... even the deliberately vague ones like POST.
If you want a message with more specific semantics than POST, you register a definition for it. This is, for instance, precisely what happened in the case of PATCH -- somebody made the case that defining a new method with additional constraints on the semantics of the payload would allow a richer, more powerful general purpose components.
The same thing could happen with the semantics of CREATE, if someone were clever enough to sit down and make the case (again: how can general purpose components take advantage of the additional constraints on the semantics?)
But until then, those messages should be using POST, and general purpose components should not assume that POST has create semantics, because RFC 7231 doesn't provide those additional constraint.

Is the much hyped REST API just a http method plus HATEOAS links?

I read that HATEOAS links are the one that separates a REST API from a normal http API. In that case, does REST need a separate name? I wonder what all this hype about REST API is about. It seems to be just a http method with one extra rule in the response.
Q) What other differences exist?
I read that HATEOAS links are the one that separates a REST API from a normal http API.
That's probably a little bit of an understatement. When Leonard Richardson (2008) described the "technology stack" of the web, he listed:
URI
HTTP
HTML
A way of exploring the latter is to consider how HTML, as a media type, differs from a text document with URI in it. To my mind, the key element is links and forms -- standardized ways of encoding into the representation the semantics of a URI (this is a link to another page, this is an embedded image, this is an embedded script, this is a form...).
Mike Admundsen, 2010:
Hypermedia Types are MIME media types that contain native hyper-linking semantics that induce application flow. For example, HTML is a hypermedia type; XML is not.
Atom Syndication/Atom Publishing is a good demonstration for defining a REST API.
Can you throw some light on what REST actually means and how it differs from normal http?
Have you noticed that websites don't normally use plain text for the representations of the information that they share? It's something of a dead end -- raw text doesn't have any hypermedia semantics built into it, so a generic client can't do anything more interesting than search for sequences that might be URI.
On the other hand, with HTML we have link semantics: we can include references to images, to style sheets, to scripts, as well as linking to other documents. We can describe forms, that allow the creation of parameterized HTTP requests.
Additionally, that means that if some relation shouldn't be used by the client, the server can easily change the representation to remove the link.
Furthermore, the use of the hypermedia representation allows the server to use a richer description of which request message should be sent by the client.
Consider, for example, Google. They can use the form to control whether search requests use GET or POST. They can remove the "I Feel Lucky" option, or arrange that it redirects to the main experience. They can embed additional information in to the fields of the form, to track what is going on. They can choose which URI targets are used in the search results, directing the client to send to Google another request which gets redirected to the actual target, with additional meta data embedded in the query parameters, all without requiring any special coordination with the client used.
For further discussion, see Leonard Richardson's slide deck from QCon 2008, or Phil Sturgeon's REST and Hypermedia in 2019.
Does n't think the client need to read the documentation if the HATEOAS link is a POST API? HATEOAS links will only guide you to an API but will not throw any light on how its request body needs to be filled....GET won't have request body. So, not much or a problem. but POST API?
Sort of - here's Fielding writing in 2008:
REST doesn’t eliminate the need for a clue. What REST does is concentrate that need for prior knowledge into readily standardizable forms.
On the web, the common use case is agents assisting human beings; the humans can resolve certain ambiguities on their own. The result is a separation of responsibilities; the humans decode the domain specific semantics of the messages, the clients determine the right way to describe an interaction as an HTTP request.
If we want to easily replace the human with a machine, then we'll need to invest extra design capital in a message schema that expresses the domain specific semantics as clearly as we express the plumbing.
To me, REST is an ideology you want to aim for if you have a system that should last for years to come which has the freedom to evolve freely without breaking stuff on parts you can't control. This is very similar to the Web where a server can't control browsers directly though browsers are able to cooperate with any changes done to Web site representations returned by the server.
I read that HATEOAS links are the one that separates a REST API from a normal http API. In that case, does REST need a separate name?
REST does basically what its name implies, it transfers the state of a resource representation. If so, we should come up with a new name for such "REST" APIs that are truly RPC in the back, to avoid confusion.
If you read through the Richardson Maturity Model (RMM) you might fall under the impression that links or hypermedia controls as Fowler named it, which are mandatory at Level 3, are the feature that separates REST from normal HTTP interaction. However, Level 3 is just not enough to reach the ultimate goal of decoupling.
Most so called "REST APIs" do put a lot of design effort into pretty URIs in a way to express meaning of the target resource to client developer. They come up with fancy documentation generated by their tooling support, such as Swagger or similar stuff, which the client developer has to follow stringent or they wont be able to interact with their API. Such APIs are RPC though. You won't be able to point the same client that interacts with API A to point to API B now and still work out of the box as they might use completely different endpoints and return different types of data for almost the same named resource endpoint. A client that is attempting to use a bit more of dynamic behavior might learn the type from parsing the endpoint and expect a URI such as .../api/users to return users, when all of a sudden now the API changed its URI structure to something like .../api/entities. What would happen now? Most of these clients would break, a clear hint that the whole interaction model doesn't follow the one outline by a REST architecture.
REST puts emphasis on link relation names that should give clients a stable way of learning the URIs intent by allowing a URI to actually change over time. A URI basically is attached to a link relation name and basically represents an affordance, something that is clear what it does. I.e. the affordance of a button could be that you can press it and something would happen as a result. Or the affordance of a light switch would be that a light goes on or off depending on the toggled state of the light switch.
Link relation names now express such an affordance and are a text-based way to represent something like a trash bin or pencil symbol next to table entry on a Web page were you might figure out that on clicking one will delete an entry from the table while the other symbol allows to edit that entry. Such link relation names should be either standardized, use widely accepted ontologies or use custom link-relation extensions as outlined by RFC 8288 (Web Linking)
It is important to note however, that a URI is just a URI which should not convey a semantic meaning to a client. This does not mean that a URI can't have a semantic meaning to the server or API, but a client should not attempt to deduce one from the URI itself. This is what the link-relation name is for, which provides the infrequently changing part of that relation. An endpoint might be referenced by multiple, different URIs, some of which might use different query parameters used for filtering. According to Fielding each of these URIs represent different resources:
The definition of resource in REST is based on a simple premise: identifiers should change as infrequently as possible. Because the Web uses embedded identifiers rather than link servers, authors need an identifier that closely matches the semantics they intend by a hypermedia reference, allowing the reference to remain static even though the result of accessing that reference may change over time. REST accomplishes this by defining a resource to be the semantics of what the author intends to identify, rather than the value corresponding to those semantics at the time the reference is created. It is then left to the author to ensure that the identifier chosen for a reference does indeed identify the intended semantics. (Source 6.2.1)
As URIs are used for caching results, they basically represent the keys used for caching the response payload. As such, it gets obvious that on adding additional query parameters to URIs used in GET requests, you end up bypassing caches as the key is not stored in the cache yet and therefore get the result of a different resource, even though it might be identical (also in response representation) as the URI without that additional parameter.
I wonder what all this hype about REST API is about. It seems to be just a http method with one extra rule in the response.
In short, this is what those self- or marketing-termed pseudo "REST APIs" do convey and many people seem to understand.
The hype for "REST" arose from the inconveniences put onto developers on interacting with other interop-solutions such as Corba, RMI or SOAP where often partly-commercial third-party libraries and frameworks had to be used in order to interact with such systems. Most languages supported HTTP both as client and server out of the box removing the requirement for external libraries or frameworks per se. In addition to that, RPC based solution usually require certain stub- or skeleton-classes to be generated first, which was usually done by the build pipeline automatically. Upon updates of the IDL, such as WSDL linking or including XSD schemata, the whole stub-generation needed to be redone and the whole code needed to looked through in order to spot whether a breaking change was added or not. Usually no obvious changelog was available which made changing or updating such stuff a pain in the ...
In those pseudo "REST" APIs plain JSON is now pretty much the de facto standard, avoiding the step of generating stub classes and the hazzle of analyzing the own code to see whether some of the forced changes had a negative impact on the system. Most of those APIs use some sort of URI based versioning allowing a developer to see based on the URI whether something breaking was introduced or not, mimicking some kind of semantic versioning.
The problem with those solution though is, that not the response representation format itself is versioned but the whole API itself leading to common issues when only a change on a part of the API should be introduced as now the whole API's version needs to be bumped. In addition to that, to URIs such as .../api/v1/users/1234 and .../api/v2/users/1234 may represent the same user and thus the same resource though are in fact different by nature as the URI is different.
Q) What other differences exist?
While REST is just an architecture model that can't force you to implement it stringent, you simply will not benefit from its properties if you ignore some of its constraints. As mentioned above, HATEOAS support is therefore not yet enough to really decouple all clients from an API and thus allow to benefit from the REST architecture.
RMM unfortunately does not talk about media types at all. A media type basically specifies how a received payload should be processed and defines the semantics and constraints of each of the elements used within that payload. I.e. if you look at text/html registered in IANA's media type registry, you can see that it points to the published specification, which always references the most recent version of HTML. HTML is designed in a way to stay backwards compatible so no special versioning stuff is required.
HTML provides, IMO, two important things:
semi-structured content
form support
The former one allows to structure data, giving certain segments or elements the possibility to express different semantics defined in the media type. I.e. a browser will handle an image differently than a div element or an article element. A crawler might favor links and content contained in an article element and ignore script and image elements completely. Based on the existence or absence of certain elements even certain processing differences may occur.
Including support for forms is a very important thing in REST actually as this is the feature which allows a server to teach a client on what a server needs as input. Most so called "REST APIs" just force a developer to go through their documentation, which might be outdated, incorrect or incomplete, and send data to a predefined endpoint according to the documentation. In case of outdated or incomplete documentation, how should a client ever be able to send data to the server? Moreover, a server might never be able to change as basically the documentation is now the truth and the API has to align with the documentation.
Unfortunately, form-support is still a bit in its infancy. Besides HTML, which provides <form>...</form>, you have a couple of JSON based form attempts such as hal-forms, halo-json (halform), Ion or hydra. None of these have yet wide library or framework support yet as some of these form representations still have not finalized their specification on how to support forms more effectively.
Other media-types, unfortunately, might not use semi-structured content or provide support for forms that teach a client on the needs of a server, though they are still valuable to REST in general. First, through Web linking link support can be added to media types that do not naturally support those. Second, the data itself does not really need to be text-based at all in order for an application to use it further. I.e. pictures an videos usually are encoded and byte based anyways still a client can present them to users.
The main point about media-types though is, as Fielding already pointed out in one of his cited blog posts, is, that representations shouldn't be confused with types. Fielding stated that:
A REST API should never have “typed” resources that are significant to the client. Specification authors may use resource types for describing server implementation behind the interface, but those types must be irrelevant and invisible to the client. The only types that are significant to a client are the current representation’s media type and standardized relation names.
Jørn Wildt explained in an excellent blog post what a "typed" resource is and why a REST architecture shouldn't use such types. Basically, to sum the blog post up, a client expecting a ../api/users endpoint to return a pre-assumed data payload might break if the server adds additional, unexpected fields, renames existing fields or leave out expected fields. This coupling can be avoided by using simple content-type negotiation where a client informs a server on which capabilities the client supports and the client will chose the representation that best fits the target resource. If the server can't support the client with a representation the client supports the server should respond with a failure (or a default representation) the client might log to inform the user.
This in essence is exactly what the name REST stands for, the transfer of a resource's state representation where the representation may differ depending on the representation format defined by the selected media type. While HATEOAS may be one of the most obvious changes between REST and a non-REST based HTTP solution, this for sure is not the only factor that makes up a payload in REST. I hope I could shed some light on the decoupling intention and that a server should teach clients what the server expects through forms and that the affordance of URIs is captured by link-relation names. All these tiny aspects in sum make up REST, and you will only benefit from REST, unfortunately, if you respect all of its constraints and not only those that are either easy to obtain or what you have the mood for implementing.

RESTful API Design and CQRS

I was thinking of how to make a RESTFul API more intention revealing. A common patter I see around various blogs on this is that conventional REST API results in
Ban a Player -> POST /players.
But I were to change to a more intention revealing interface , I could use
Ban a Player -> POST /players/{ playerid }/banPlayer
The second one I feel is more intention revealing.
The common objection I get from the team is that the second one does not comply with start REST style.
Also currently I cannot move away from a RESTful API.
I would like to hear your thoughts on this.
With Restful API design there are two schools of thought around how to apply actions to a resource.
You describe the action to be taken against the resource in the Uri:
Request Uri:
POST /players/{id}/ban
Note: Just use ban - we already know the resource is a player, its in the base Uri.
You can have the action in the body of the request:
Request Uri:
POST /players/{id}
Request Body:
{ 'action': 'ban' }
You can pick either way - whichever you prefer, there is lots of discussion on both but ultimately both are correct.
Note:
My assumption here that banning a player is more than just updating a part of it, but rather a system action (or state transition) relating to the player. Otherwise if it was just an update to the player resource you should handle with a PATCH or PUT as appropriate.
Some discussions for reference:
http://restful-api-design.readthedocs.io/en/latest/methods.html
https://github.com/interagent/http-api-design/issues/58
https://nordicapis.com/designing-a-true-rest-state-machine/
https://softwareengineering.stackexchange.com/questions/141410/restful-state-changing-actions
With plenty more if you do some Googling...
Long story short: it shouldn't be mandatory to be intention revealing but if you want to add some DDD on how this API looks like then it is nothing that prevents you from doing that
According to HATEOAS constraint of a RESTful web API (this constraint is an essential part of the "uniform interface" feature of REST, as defined in Roy Fielding's doctoral dissertation), the software clients of your API should not care about the URLs. Every possible&permitted action should be included in the response, with the corresponding link relation and URI. In this way you have to hardcode only the link relations.
This constraint does not however prevent you from making the API more intention revealing for the Human clients that try to understand the overall architecture. I recommend you to choose this path, as Human users are at least as important as the software that they write.
Roy Fielding wrote about this on his blog post.
Since you asked for the RESTful way not the best way, here's my thoughts.
Your RESTful URI options include:
/players
/players/{ playerid }/banPlayer
/player-banning
/entities?action=ban_player&method=PUT
/banana
anything else, REST doesn't dictate what your URIs should look like
The RESTful way is to expose knowledge of the next available states purely through hypertext. To do REST, you must use Hypertext As The Engine Of Application State (HATEOAS). Relying on client knowledge of the URI is depending on out-of-band knowledge, which is antithetical to REST.
Your resources do not need to map directly to your business objects. If you choose, you can represent user intent itself as a resource, e.g. a banned player event resource. You can POST to it with some info on which player to ban, and subsequent GETs will provide information on the event.
Oh and just because REST doesn't care what your URIs are, doesn't mean you shouldn't. You'll just have to use a different standard to decide what's best.
According to the REST API approaches, you need to use your entities in URI, so, as banPlayer is not an entity, you cannot use it.
I suggest to UPDATE your record with PUT method.
Here you can read more about rules. Actually, the first section about URIs is just about your case.
The common objection I get from the team is that the second one does not comply with start REST style.
The easy answer is this: consistency in the API has value, whether REST or not. So "that's not how we do it here" is going to trump "but REST says".
The spelling of URI in an API is a lot like the spelling of method names in your code. There are a lot of different arguments for different styles, but "local convention" is a strong argument by itself.
That said -- REST does not care what spelling you use for your identifiers.
This is what Fielding had to say in 2008
A REST API should spend almost all of its descriptive effort in defining the media type(s) used for representing resources and driving application state, or in defining extended relation names and/or hypertext-enabled mark-up for existing standard media types. Any effort spent describing what methods to use on what URIs of interest should be entirely defined within the scope of the processing rules for a media type (and, in most cases, already defined by existing media types). [Failure here implies that out-of-band information is driving interaction instead of hypertext.]
In band would be including the URI in the representation of the resource -- putting it into the description of a form in the HTML document. Out of band is documenting the URI, and expecting people to do the right thing with it.
Note: there's nothing wrong with human-readable URI, or documenting the URI that should be used. But notice that you can post questions to stackoverflow even though the people who wrote your browser didn't read stack overflow's API documentation -- that's REST.
This Google Cloud article API design: Understanding gRPC, OpenAPI and REST and when to use them clarifies the REST vs RPC debate. REST is more relevant for entity-centric API whereas RPC is more relevant for action-centric API (and CQRS). The most mature REST level 3 with hypermedia controls works well only for entities with simple state models.
Understand and evaluate first the benefits of REST for your case. Many APIs are REST-ish and not RESTful. OpenAPI is actually RPC mapped over and HTTP endpoints but it doesn't prevent it to be widely adopted.

Does RESTFul mean URL shouldn't contain parameters

I've heard about the conception RESTFul for a long time but I always can't understand it clearly.
I've read the links below:
What are RESTful web services?
What exactly is RESTful programming?
As my understanding, RESTFul means that the URL shouldn't contain any verb, meaning that an URL represents an unique resource. And also, the method GET shouldn't modify any resource and we should use POST to do so.
But I still have a question.
For example, if we want to search a user by his name, we can design the URL like this:
www.example.com/user?name=test
Or like this:
www.example.com/user/name/test
Can you tell me which one is RESTFul?
When you are using rest - you are accessing resources through URI's and you can set actions on these resources through the HTTP request types.
There are different parameters that you can pass through REST request , there can be resource identifiers (That are usually passed through the URI - in your case the www.example.com/user/name/test is more restfull) or things like filters when you want to search, for example www.example.com/user/?age=....
In this post you can find more about best practices in passing parameters in rest:
REST API Best practices: Where to put parameters?
REST, to start with, is not a protocol but just an architectural style that when followed correctly decouples clients from server APIs and thus make them tolerant to changes done on the serverside. It should therefore be regarded as a design approach for distributed systems.
The difference between a protocol and an architectural style is simply that the former one defines a rule set a server or client has to follow. It should be defined as precise as possible to reduce ambiguity and thus reduce the likelihood of incompatible implementations by different vendors. The latter one just contains suggestions how to design the overall application and/or message flow and outlining the benefits one gains by adhering to the design.
By that definition, REST is a generalization of the interaction style used for browsing Web content. A Web browser is able to make use of multiple protocols such as HTTP, FTP, SMTP, IMAP, ... and different flavors of it while remaining independant of any server specific implementation though being capable of interacting with it as the communication is done according to the rules of the protocol used. REST does follow this approach by building up on the same protocols (most often just HTTP) which an application implementing the RESTful architeturce approach should adhere to as well to stay compatible with other users of that protocol.
Similar to a Web browser, which does not care whether the URI string contains any semantical structure, REST doesn't care how the URI is designed or if the resource is named after a verb either. Both will use the URI just to invoke a resource on the server providing the resource. A RESTful client should thus not expect a certain URI to return a certain type (= typed resources). Though how will a client know what an invoked URI will return? The keywords here are content-negotiation and media-types.
The format exchanged by both, Web browser and REST, is negotiated between client and server. While for typical Web browsers the representation is probably one of the HTML variants (i.e. XHTML, HTML 5, ...) it is not limited to it. Your browser is probably capable of processing other media types as well, i.e. pictures, videos, PDF, ... As REST is just a generalization of this idea it also should not limit itself to just XML or JSON.
Media types are thus some kind of guildlines of how to process and interpret data received in a representation format outlined by the media type. It should define the syntax and semantics of a received payload i.e. like text/html, which defines that a received representation will have a case-insensitive <html token (<xhtml in case of XHTML) near the beginning of the content and that fragment identifiers (# character in URIs) are according to URI semantics and that certain tags like A, IMG or others may define a name attribute which act as a target for anchors. It may also define a more thorough description of the syntax and how to interpret it like in case of text/vcard (vCard) (or one of its variants like application/vcard+json (jCard) or application/vcard+xml (xCard)).
As media types are one of the most important parts of the RESTful design, most effort has to be put into its creation. A client that can't deduct the next possible actions from the media type needs some out-of-band information which often is hardcoded into the client and thus couples it tightly to the API itself. If the API will change in future, the chances that the client will stop working once the changes are applied on the server are fairly high (depending on the changes).
I hope I could shed some light on the idea behind REST and that the design of URI is not of relevance to a true RESTful client/API as the client might deduct what to do with that URI based on some relation name returned for the URI and the media-type which might state that a relation name such as order can be invoked to trigger a new order with the API rather than having the client to analyze something like http://some.server.com/api/order/product/1234 or http:/some.server.com/ajfajd/fj/afja.
Further information and reasons why RESTful APIs should follow the design closely can be found in Roy Fielding famous blog post which explains some of the constraints an API should adhere to if it follows the RESTful approach.
REST resource is a noun, no notion of behavior should be in the uri, we use verbs to indicate action we are doing. Basically there are only two types of resources: Instance and Collections. So good practise is to use plurals in the uri: users instead of user:
www.example.com/users GET - fetch collection of all users
www.example.com/users/1 GET - fetch instance of a concrete user
www.example.com/users POST - create of a new user
etc.
REST is not a strict standard (but a list of 6 constraints) says nothing about how search feature should be implemented. But definetely your first option /users?name=test seems preferable for me: tt is straightforward and this is a huge benefit.
As alternative you may want to investigate OData protocol - it is a standard to make queryable apis. OData-like solution would be:
/users?$filter=name eq 'test'
Also Facebook APIs is a good source for inspiration.
Hope this helps

Can I have a REST element URI without a collection URI?

a basic REST question.. I design a REST API and would like to be able to get a list of book recommendations based on a book id (i.e. client sends book id=w to server and server replies with a list of recommended books, id=x,y,z).
I see two ways to do this:
/recommendation?bookId=thetitle
/recommendation/thetitle
Option 2 seems a bit cleaner to me but I'm not sure if it would be considered good REST design? Because /recommendation/thetitle looks like an element URI, not a collection URI (although in this case it would return a collection). Also, the first part of the resource (/recommendation) would not make any sense by itself.
Thankful for any advice.
URL patterns of this kind have nothing to do with REST. None of the defining properties of REST requires readable URLs.
At the same time, one of the core principles (HATEOAS), if followed properly, allows API clients (applications, not people!) to browse the API and obtain every link required to perform a desired transition of application state or resource state based on a well known message format.
If you feel your API must have readable URLs, it's a good sign that its design probably isn't RESTful at all. This implies the need for a developer to understand the URL structure and hardcode it somewhere in a client application. Something that REST is supposed to avoid by principle.
To quote Roy Fielding's blog post on the subject:
A REST API must not define fixed resource names or hierarchies (an obvious coupling of client and server). Servers must have the freedom to control their own namespace. Instead, allow servers to instruct clients on how to construct appropriate URIs, such as is done in HTML forms and URI templates, by defining those instructions within media types and link relations. [Failure here implies that clients are assuming a resource structure due to out-of band information, such as a domain-specific standard, which is the data-oriented equivalent to RPC’s functional coupling].
Obviously, nothing stops you from actually making URLs meaningful regardless of how RESTful your API actually is. Even if it's for a purpose not dictated by REST itself (viewing the logs left by a client of a properly RESTful API could be easier for a human if they're readable, off the top of my head).
Finally, if you're fine with developing a Web API that's not completely RESTful and you expect developers of clients to read this kind of docs and care about path building, you might actually benefit from comprehensible URLs. This can be very useful in APIs of the so-called levels 0-3, according to Richardson's maturity model.
What's important in terms of REST is how you're leveraging the underlying protocol (HTTP in this case) and what it allows you to do. If we consider your examples from this perspective, /recommendation/thetitle seems preferable. This is because the use of query parameters may prevent responses from being cached by browsers (important if you're writing a JS client) or proxies, making it harder to reuse existing tools and infrastructure.