Java EE 6 Compliant Request Based Framework - frameworks

recently, i was research about which framework to learn.
I realize that request based component is mostly used in industry and has its own advantages because of its scalability. Moreover, there are some forumer that mentioned learning of component based framework(Standard Java API/framework/JSF) is waste of time(Is this true ?). On the other hand, customization in component is quite difficult but require to write less code.
My Question :
Which request based framework is compliant to Java EE 6 ?
Do ejb exclude from spring ot strut ?
Which framework has higher level and yet powerful and flexbility, performance ?
How to create UI in spring ? There are some people who used struts for front end and spring for back end or use spring alone.
Is correct to say that there is no HttpServlet anymore and instead of replace by action or something else.
Please help.
Thanks.

i would go es neat to java standard as possible, so look at ejb3/jpa for persistence and jsf2 for front end.
in a jee6 environment you can completely forget everything about struts and spring...
and of course there is still a HttpServlet, most of the web front end technologies are based on Java Servlet Specification.

Related

Choosing GUI framework for portlets under WebCenter portal

I'm just looking through available technologies to create portlets using WSRP. So we have the following requirements (I'll try to explain so as I can):
backend part: Jax-WS webservices implementation (in fact JPA + some business logic)
frontend: portlets should use Jax-WS webservices and should be exposed through WSRP and consumed in Oracle WebCenter portal
everything should be built via Maven
I'm having troubles with selecting a proper framework for portlet development.
A couple of things which I'm considering:
ADF - has a big learning curve, tightly coupled to Oracle stack, I wouldn't like to use it
Vaadin framework - looks fine, but its latest version doesn't support WSRP Add on, so I will have to write something on my own
There are also a couple of others possible frameworks which I have not looked through yet: JSF, Spring Portlet MVC.
Maybe somebody of you has already used similar stack and can give some advice on which framework is more convenient for portlet with WSRP. I would very much appreciate any thoughts on that.
Thanks in advance
For me I used JSF with JSF-Portlet-Bridge, Struts and ADF
But I always preferred ADF since it gave me a quick way to generate WSRP portlets from Task-Flows.
If you are going to develop big list of Portlets, I'd tell you to consider ADF, even though the learning curve might be steep but it'll be worth it, and you already have knowledge in JSF it'll be an easy task!

Restlet + mongoDB + Freemarker

We are making a web based application in Java that should be accessible to any device and so we zeroed in for Restlet for our REST based web service need.
For UI we are thinking of Freemarker together with Twitter bootstrap and database will be mongoDB. And guice for dependency injection.
Since I am new to most these technology stack, do you think this is fair choice for a long run. Also, for database mapper framework we decided to use Jongo it seems lightweight. Kundera is an option but it has lots of dependency. What you expert say ?
"Kundera is an option but it has lots of dependency." Not sure what do you mean by this statement? could you please explain it more?
Please take a look at https://github.com/impetus-opensource/Kundera/wiki/Kundera-Mongo-performance for performance using Kundera!
It really depends on your needs
REST Framework :
IHMO you should test at least theses 3 JAX-RS Frameworks : RestEasy / Jersey / Restlet and choose the one according to your needs.
JAX-RS Frameworks
https://stackoverflow.com/questions/1710199/which-is-the-best-java-rest-api-restlet-or-jersey
UI :
I've worked with Jersey + Freemarker through a framework called Webengine from Nuxeo, it was ok.
Nevertheless, you should consider a rich client approach based on Javascript/CSS/HTML (see Backbone.js, Ember.js)
Pros :
With such approach you could expose JSON REST services using a JAX-RS Framework (instead of freemarker/html services) .
Theses services can be consumed by a web application and/or native mobile apps (ios, android).
Cons:
Your team must have advanced javascript skills (this blog can help )
Database :
What kind of data do you need to store ?
MongoDB is document-oriented and flexible enough to cover lots of needs
As you said, Jongo is a lightweight API (500 lines of code + 1 dependency) over mongo-java-driver.
It allows you to query MongoDB as if you were in MongoShell (ie. with plain json/bson queries) and map your object using jackson.
This question is a good example: Mongo DB query in java
Relying on Restlet Framework for your RESTful web API/service backend sounds like a good choice for a multi-devices application. FreeMarker is very powerful and flexible so you should be in good company there as well.
I don't know too much about the other pieces of your stack.

REST using JAX RS or Spring MVC

I'm trying to build a REST web service (server side) that will allow a partner system to connect/POST order information in JSON format. Should I use JAX RS (for example from JBOSS RESTEasy) or Spring MVC to build such a service? They both seem capable enough to accomplish the same thing as far as building a REST service is concerned.
Thank you!
Depends if you want to learn something new or go with what you already know.
If you already have experience with Spring MVC and want to get the work done quickly, then I'd suggest staying with Spring MVC. There are some neat enhancements to the REST features in Spring 3.1, including the ability to generate "end point documentation".
If, on the other hand, you are looking to expand your CV and/or enjoy learning new technologies, then give JAX RS a go. I haven't used it but it is a dedicated WS framework that would likely have any feature you'd require.
Of course, if you have experience with JAX RS but not Spring MVC, then the opposite applies :-)
If you are developing an EE 5 project then I would recommend using JAX-RS with Spring. The RI for JAX-RS, Jersey, has a Spring JAX-RS dispatcher servlet. This makes it much easier to manage dependency injection with JAX-RS and gives you all of the Spring MVC features like form binding and validation, but you are also able to use the Java standard approach for REST - and in my opinion, a better and easier to manage approach than Spring REST.
If it is an EE 6 app, then you may want to think about ditching Spring as JAX-RS is part of the EE 6 specs and you can use EE CDI within your JAX-RS classes.
Notice that Jersey has a bug that affects its integration with Spring:
https://java.net/jira/browse/JERSEY-2301
In summary if you need Spring AOP in your JAX-RS resources it will not work. Dependency injection works well.
REST is more of an architecture style of developing web services which are very easy to understand without even documentation for a developer. Normal tech savy people can easily understand the URL patterns also the response types of JSON and XML support makes it easy for integrating with new javascript modularization standards such as backbone or angular.js.
On the other hand SpringMVC is more concentrating on model-view-controller architecture style of developing applications.

For RESTful services in Java, is JAX-RS better than an MVC framework like Swing, Grails or Play?

For example, Play-framework supports RESTful services like this: RESTful on Play! framework
How does this compare to something like Jax-RS Jersey implementation? Does a framework like Play run circles around Jersey because of all it's cool bells and whistles, and it does REST too?
Developer productivity is important, but so is a proper implementation. Perhaps using an MVC framework for REST only services is 'wrong'?
Note, only RESTful services, no UI components at all.
Even though it's not "wrong" to use an MVC framework for RESTful services, there are some pros and cons versus using a JAX-RS implementation.
(Disclaimer: I have only used Jersey and Play! for fun, and not on production-grade systems, so I have tailored my comments more generally to MVC vs. JAX-RS. Keep in mind that these are broad generalizations.)
MVC frameworks--at least the ones that are considered developer friendly and "slick"--typically save you from having to build a persistence layer (the model part). Most also simplify "routing" requests using either scaffolding via convention or some form of configuration. The downsides are that you have to conform to some conventions for your controllers and usually have to write a view for each resource (or build layers of abstractions to avoid rewriting the same code).
JAX-RS excels at defining the routing (using Java annotations) as well as eliminating any restrictions on the service class. In my experience, that has greatly reduced the amount of boilerplate code and developer overhead. Jersey and Apache CXF also handle the XML or JSON serialization using JAXB annotations, which eliminates the need to figure out the view in an MVC context. The downside here is that you have to figure out your own ORM or persistence layer, which could be good or bad depending on whether you're building on top of existing data or creating a greenfield system (or using something other than an JPA/RDBMS e.g. NoSQL data store).
My own personal comment: Play! is a really cool framework, but I'd choose CXF (or Jersey) over an MVC framework any day for building out a RESTful service. In my experience, this frees up the developer to focus on the logic needed for the service, and opens up options for different database approaches. Right tool for the right job.
As a rule of thumb: For Scala, use Play. For Java, use Jersey.
You can use Jersey/Scala and Play/Java; I've done both. It works. It isn't bad. But unless you have a particular reason to do that, I wouldn't mix ecosystems. Java and Scala are interoperable but they have different ecosystems, I would avoid adding Java-isms if you are using Scala or Scala-isms and dependencies if you are running straight Java.
Jersey and Play are generally close for REST services. Neither really has any killer features over the other.
Jersey defines URL mappings in annotations, Play defines them in a service wide route file. And they bundle or have varying quality of integration with different libraries for things like XML, JSON, database, testing, mocking, dependency injection libraries and app server deployment.
The Java world has JMS, Spring, JUnit, jdbi/hibernate/jpa, Jetty/Grizzly. The Scala world has Akka, specs2/ScalaTest, Anorm/slick. Jersey is a better fit for the first world, Scala for the second. You can definitely cross that, but it will be a little less elegant and might require more glue coding.
JAX-RS is a standard and implementations can be created by different vendors. Jersey is one such implementation. The other frameworks may make use of JAX-RS but are not standards. So it is not a one-to-one comparison.
I have never heard of Play before but it does look interesting, more akin to Rails and Django than Jersey. What I like about Jersey is that it can be integrated into existing Java web applications by simply adding the JARs and declaring some things in the web.xml. What I find confusing about Jersey and JAX-RS is the routing.
Play seems to make routing easier, however, correct me if I'm wrong, seems like it is an all-or-nothing framework and cannot be used alongside other servlets in the same web application.

Frameworks for Layering reusable Architectures

My question is very simple, my intention is to generate a repository with your responses so it could serve to the community when selecting frameworks for developing enterprise general purpose applications.
This could apply very well for general purpose languages such as C++, C# or Java.
What Framework do you recommend for generating Layered Architectures?
Based on you experience why do you prefer the usage of some Framework versus your own architecture?
How long do you believe your selected Framework will stay as a preferred option in the software development industry?
This is indeed an overly general question, especially since there are so many interpretations of the very word framework, and within the world of frameworks many different kinds for different tasks. Nevertheless, I'll give it a shot for Java.
Java
Java EE
The default overall enterprise framework of Java is called Java EE. Java EE strongly emphasis a layered architecture. It's a quite large framework and learning every aspect of it can take some time. It supports several types of applications. Extremely small and simple ones may only use JSP files with some scriptlets, while larger ones may use much more.
Java EE doesn't really enforce you to use all parts of it, but you pick and choose what you like.
Top down it consists of the following parts:
Web layer
For the web layer Java EE primarily defines a component and MVC based Web Framework called JSF - JavaServer Faces. JSF utilizes an XML based view description language (templating language) called Facelets. Pages are created by defining templates and letting template clients provide content for them, including other facelets and finally placing components and general markup on them.
JSF provides a well defined life-cyle for doing all the things that every web app should do: converting request values, validating them, calling out to business logic (the model) and finally delegating to a (Facelets) view for rendering.
For a more elaborate description look up some of the articles by BalusC here, e.g. What are the main disadvantages of Java Server Faces 2.0?
Business layer
The business layer in the Java EE framework is represented by a light-weight business component framework called EJB - Enterprise JavaBeans. EJBs are supposed to contain the pure business logic of an application. Among others EJBs take care of transactions, concurrency and when needed remoting.
An ordinary Java class becomes an EJB by applying the #Stateless annotation. By default, every method of that bean is then automatically transactional. Meaning, if the method is called and no transaction is active one is started, otherwise one is joined. If needed this behavior can be tuned or even disabled. In the majority of cases transactions will be transparent to the programmer, but if needed there is an explicit API in Java EE to manage them manually. This is the JTA API - Java Transaction API.
Methods on an EJB can easily be made to execute asynchronous by using the #Asynchronous annotation.
Java EE explicitly supports layering via the concept of a separate module specifically for EJBs. This isolates those beans and prevents them from accessing their higher layer. See this Packaging EJB in JavaEE 6 WAR vs EAR for a more elaborate explanation.
Persistence layer
For persistence the Java EE framework comes with a standard ORM framework called JPA - Java Persistence API. This is based on annotating plain java classes with the #Entity annotation and a property or field on them with #Id. Optionally (if needed) further information can be specified via annotations on how objects and object relations map to a relational database.
JPA heavily emphasizes slim entities. This means the entities themselves are as much as possible POJOs that can be easily send to other layers and even remote clients. An entity in Java EE typically does not take care of its own persistence (i.e. it does not hold any references to DB connections and such). Instead, a separate class called the EntityManager is provided to work with entities.
The most convenient way of working with this EntityManager is from within an EJB bean, which makes obtaining an instance and the handling of transactions a breeze. However, using JPA in any other layer, even outside the framework (e.g. in Java SE) is supported as well.
These are the most important services related to the traditional layers in a typical enterprise app, but the Java EE framework supports a great many additional services. Some of which are:
Messaging
Messaging is directly supported in the Java EE framework via the JMS API - Java Messaging Service. This allows business code to send messages to so-called queues and topics. Various parts of the application or even remote applications can listen to such a queue or topic.
The EJB component framework even has a type of bean that is specifically tailored for messaging; the message driven bean which has a onMessage method that is automatically invoked when a new message for the queue or topic that the bean is listening to comes in.
Next to JMS, Java EE also provides an event-bus, which is a simple light-weight alternative to full blown messaging. This is provided via the CDI API, which is a comprehensive API that among others provides scopes for the web layer and takes care of dependency injections. Being a rather new API it currently partially overlaps with EJB and the so-called managed beans from JSF.
Remoting
Java EE provides a lot of options for remoting out of the box. EJBs can be exposed to external code willing and able to communicate via a binary protocol by merely letting them implement a remote interface.
If binary communication is not an option, Java EE also provides various web service implementations. This is done via among others JAX-WS (web services, soap) and JAX-RS (Rest).
Scheduling
For scheduling periodic or timed jobs, Java EE offers a simple timer API. This API supports CRON-like timers using natural language, as well as timers for delayed execution of code or follow up checks.
This part of Java EE is usable but as mentioned fairly basic.
There are quite some more things in Java EE, but I think this about covers the most important things.
Spring
An alternative enterprise framework for Java is Spring. This is a proprietary, though fully open source framework.
Just as the Java EE framework, the Spring framework contains a web framework (called Spring MVC), a business component framework (simply called Spring, or Core Spring Framework) and a web services stack (called Spring Web Services).
Although many parts of the Java EE framework can be used standalone, Spring puts more emphasis on building up your own stack than Java EE does.
The choice of Java EE vs Spring is often a religiously influenced one. Technically both frameworks offer a similar programming model and a comparable amount of features. Java EE may be seen as slightly more light-weight (emphasis convention over configuration) and having the benefit of type-safe injections, while Spring may offer more of those smaller convenience methods that developers often need.
Additionally Spring offers a more thoroughly and directly usable security API (called Spring Security), where Java EE leaves a lot of security details open to (third party) vendors.
To specifically answer the second question:
Developing your own framework gives you the burden of having to maintain it and educating new developers in using it.
The larger your framework becomes, the more time you have to devote specifically to it and the less time you thus have to solve your actual business problem. This is okay if your business problem is the framework, but otherwise it can become a bit of a problem, even for very large companies that can dedicate a group of people to such a framework.
If you're a smaller company (say ~15 developer max) this can really become a huge burden.
Additionally, if your own framework is the kind of framework that can take advantage of third party developments (e.g. third parties can develop components for JSF), then your own framework obviously won't be able to take advantage of that.
Unless of course you open source your own framework, but this will only significantly increase the burden of supporting it. Just dumping your source code on sourceforge does not really count. You will have to actively support it. All of a sudden your framework becomes their framework with maybe 'weird' feature requests and awkward error reports for environments that you have no personal interest in.
This also assumes that your framework will actually be used by external users. Unless it's really very, very, good and you put lots of energy in it, this will probably not happen if it's simply the umpteenth Java web- or ORM framework.
Obviously, some people have to take up the job of creating new frameworks, otherwise the industry just stagnates, but if your prime concern is your business problem I would really think twice of starting your own framework.
Very vague question, I'm not really sure it's ever a good idea to "write your own" at this point for a work project (unless writing your own, IS the project). If it's a learning exercise, fine, but otherwise go use one of the libraries written by people who have been doing it far longer. If you really want to get involved, read their code, try and contribute patches etc.
For .Net there is Sharp Architecture Which is a pretty popular framework for layered applications.
Here's some of the stuff I use (I don't use Sharp Architecture)
First, the infrastructure stuff
For Dependency Injection, I use StructureMap. I use it because it's way more robust and performant than anything I would or could write, and it's very well supported within the .Net community. It also sticks to being DI, and doesn't venture out into other things that I might want to use other libs for (AOP etc). The fluent configuration is fantastic (but many .Net DI Tools have that now)
For AOP, I use Linfu Dynamic Proxy. I know a lot of people that like the code weaver variety for performance reasons, but that's always seemed a bit like premature optimization to me.
For a DataMapper, I use AutoMapper. This is one where I'm on again off again. If you can do your mappings based just on convention, then great, I'll use it. Once I have to start tweaking the configuration to do special things.... to me that starts to get into the gray area where the code might be more clear with just some left=>right wrapped in a function.
Web/UI
Asp.Net MVC. Although to be quite honest, I'm having a falling out lately and may soon be moving to FubuMvc. Asp.Net MVC seems like it has split personalities in terms of API design (dynamic over here, static over there, using blocks to render forms, but System.Actions to render other things etc). Combine that with the fact that it's not really OSS (you can't submit a patch), and to me there's a compelling reason why the community should come up with something better that's OSS.
Persistence
NHibernate, Specifically Fluent NHibernate. Sure I'd love to write my own OR/M, but at the same time I'm certain that the hordes of developers who have worked on NHibernate are way smarter than me.
Services/Distribution etc
WCF for Synchronous calls
NServiceBus for Messaging and most async calls.
Most of this stuff is OSS, so how long will it be around, well, I would imagine a good long while.
This question doesn't work very well. Selecting frameworks is difficult, and very context specific. For each selection process you might end up with a simple shortlist and a simple list of questions to answer, but those lists do not transfer well to other selections.
The number of parameters and the parameter sensitivity influencing a decision is very large, and at enterprise level a lot of them are not technical.
Currently, there are no frameworks available that are ready to support these near-term enterprise needs:
the switch for most of the workforce from pc to tablet and phone;
the switch from web client and rdbms to p2p/disconnected based storage and distribution