What is AspectJ context binding? - aspectj

can anyone explains to me what "context binding" at runtime in AspectJ is, and in what ways is it different from reflection? In particular, if I need to get an annotation from a class woven by a given aspect, context binding:
after(MyAnnotation annotation) : execution(* Foo.*(..)) && #this(annotation)
or reflection:
MyAnnotation myAnnotation = thisJoinPoint.getThis().getClass().getAnnotation(MyAnnotation.class);
can be used, but what is the best solution (that is, the quickest one)?

You are better off using the former. Creating thisJoinPoint objects are expensive since all fields must be filled in when accessed. Therefore, AspectJ will only create one if required.
Accessing the annotation via advice is generally faster since the compiler has more of a chance to optimize. Furthermore, it is more strongly types (your second example has a type error).

Related

Is it better to implement two classes or one class in the following case?

I have a class "Vertex" with 4 attributes and a class "Vertex_" with one attribute. The one attribute in Vertex_ is also in Vertex. Is it a good design to keep the two classes or is it better to program just the class Vertex, although there will be 3 variables, which are not used, when I instantiate an object which needs just the one attribute?
Class Vertex_ is actually somewhat a duplicate of Class Vertex.
I would suggest using inheritance and having Class Vertex inherit the attribute from the parent Class Vertex_ while having the 3 other attributes Class Vertex_ does not have.
TL;DR
This is a question that deserves a very long answer.There are two reasons for inheritance and the reason for doing it can depend on the language being used. One reason is for code reuse. Without knowing anything else about your situation, it would seem you are inheriting simply to reuse an attribute (but I suspect there could be more you will be reusing). But, there are other ways of getting code reuse without inheritance, for example containment, which is often a better way.
A powerful feature of object-oriented programming is the ability to substitute one type of object for another. When a message is sent to that object, the correct method implementation is invoked according the actual type of object receiving the message. This is one type of polymorphism. But in some languages the ability to substitute one object for another is constrained. In Java I can only substitute an instance of class B for an instance of class A if B is a descendant of A. So inheritance becomes important in Java to support polymorphism.
But what does it mean to be able to substitute a B instance for an A instance? Will it work? Class A has established a contract stating what each of its methods requires before you can successfully call it and at the same time states what each method promises to deliver. Will the methods of class B live up to that contract? If not, you really cannot substitute a B for an A and expect the program to run correctly. B may be a subclass of A but it is not a subtype of A (see Liskov substitution principle]).
In a language such as Python, inheritance is not required for polymorphism and coders are more apt to use it as code-reuse mechanism. Nevertheless, some people feel that subclassing should only be used to express subtyping. So, if Vertex_ is only using one of the four attributes it has inherited, I am doubtful that an instance of Vertex_ could be safely substituted for an instance of Vertex. I would not do the inheritance unless the language were C++ and then I would use private inheritance.

How are Classes an Annotations Related in Java?

I found this quote
the first step to using reflection is to obtain a Class object that
represents the class whose annotations you want to obtain
from Herbert Schildt
Can anyone explain that sentence and also "Class" with respect to annotations. Does an annotation reside inside a "Class" or not?
You can add annotations to lots of symbols like classes, methods, constructors etc.
The point of the quote is, that in order to access those annotations at run-time, your entry point is the class object. From there you can start inspecting it, looking for methods, members etc. and access their annotations. This API is also called reflection, because it essentially reflects the code you have written as an object at run-time (including annotations).

OPAL: Manually creating an annotated method

in the OPAL framework, is it possible to manually create an annotated method?
I currently have the following code:
Method(0, "signaturePolymorphicMethod",
MethodDescriptor(ObjectType("java/lang/Object"), VoidType), Seq())
and I want to add the annotation
#java.lang.invoke.MethodHandle$PolymorphicSignature
to this method. How can I do this?
Annotations are generally stored using the JVM's general "Attributes" mechanism.
In this case the annotation is a non-public inner class of MethodHandle with the "Runtime Retention Policy". Hence, to mark a method as having a "Polymorphic Signature" it is necessary to add the RuntimeVisibibleAnnotations_Attribute to the respective method's attributes table. However, given that the visibility of the annotation is limited to the java.lang.invoke package this is (in this specific case) probably rarely useful. Nevertheless, it is possible to query methods in the respective package

Intersystems Cache - Correct syntax for %ListOfObjects

The documentation says this is allowed:
ClassMethod GetContacts() As %ListOfObjects(ELEMENTTYPE="ContactDB.Contact")
[WebMethod]
I want to do this:
Property Permissions As %ListOfObjects(ELEMENTTYPE="MyPackage.MyClass");
I get an error:
ERROR #5480: Property parameter not declared:
MyPackage.Myclass:ELEMENTTYPE
So, do I really have to create a new class and set the ELEMENTTYPE parameter in it for each list I need?
Correct syntax for %ListOfObjects in properties is this one
Property Permissions As list of MyPackage.MyClass;
Yes, a property does sometimes work differently than a method when it comes to types. That is an issue here, in that you can set a class parameter of the return value of a method declaration in a straightforward way, but that doesn't always work for class parameters on the class of a property.
I don't think the way it does work is documented completely, but here are some of my observations:
You can put in class parameters on a property if the type of the property is a data-type (which are often treated differently than objects).
If you look at the %XML.Adaptor class it has the keyword assignment statement
PropertyClass = %XML.PropertyParameters
This appears to add its parameters to all the properties of the class that declares it as its PropertyClass. This appears to be an example of Intersystems wanting to implement something (an XML adaptor) and realizing the implementation of objects didn't provide it cleanly, so they hacked something new into the class compiler. I can't really find much documentation so it isn't clear if its considered a usable API or an implementation detail subject to breakage.
You might be able to hack something this way - I've never tried anything similar.
A possibly simpler work around might be to initialize the Permissions property in %OnNew and %OnOpen. You will probably want a zero element array at that point anyway, rather than a null.
If you look at the implementation of %ListOfObjects you can see that the class parameter which you are trying to set simply provides a default value for the ElementType property. So after you create an instance of %ListOfObjects you could just set it's ElementType property to the proper element type.
This is a bit annoying, because you have to remember to do it every time by hand, and you might forget. Or a maintainer down the road might not now to do it.
You might hope to maybe make it a little less annoying by creating a generator method that initializes all your properties that need it. This would be easy if Intersystems had some decent system of annotating properties with arbitrary values (so you could know what ElementType to use for each property). But they don't, so you would have to do something like roll your own annotations using an XData block or a class method. This probably isn't worth it unless you have more use cases for annotations than just this one, so I would just do it by hand until that happens, if it ever does.

In Scala, plural object name for a container of public static methods?

I've written a Scala trait, named Cache[A,B], to provide a caching API. The Cache has the following methods, asyncGet(), asyncPut(), asyncPutIfAbsent(), asyncRemove().
I'm going to have a few static methods, such as getOrElseUpdate(key: A)(op: => B). I don't want methods like this as abstract defs in the Cache trait because I don't want each Cache implementation to have to provide an implementation for it, when it can be written once using the async*() methods.
In looking at Google Guava and parts of the Java library, they place public static functions in a class that is the plural of the interface name, so "Caches" would be the name I would use.
I like this naming scheme actually, even though I could use a Cache companion object. In looking at much of my code, many of my companion objects contain private val's or def's, so users of my API then need to look through the companion object to see what they can use from there, or anything for that matter.
By having a object named "Caches" is consistent with Java and also makes it clear that there's only public functions in there. I'm leaning towards using "object Caches" instead of "object Cache".
So what do people think?
Scala's traits are not just a different name for Java's interfaces. They may have concrete (implemented) members, both values (val and var) and methods. So if there's a unified / generalized / shared implementation of a method, it can be placed in a trait and need not be replicated or factored into a separate class.
I think the mistake starts with "going to have a few static methods". Why have static methods? If you explain why you need static methods, it will help figure out what the design should be.