I'm new to NoSQL and I'm trying to figure out the best way to model my database. I'll be using ArangoDB in the project but I think this question also stands if using MongoDB.
The database will store 12 categories of products. Each category is expected to hold hundreds or thousands of products. Products will also be added / removed constantly.
There will be a number of common fields across all products, but each category will also have unique fields / different restrictions to data.
Keep in mind that there are instances where I'd need to query all the categories at the same time, for example to search a product across all categories, and other instances where I'll only need to query one category.
Should I create one single collection "Product" and use a field to indicate the category, or create a seperate collection for each category?
I've read many questions related to this idea (1 collection vs many) but I haven't been able to reach a conclusion, other than "it dependes".
So my question is: In this specific use case which option would be most optimal, multiple collections vs single collection + sharding, in terms of performance and speed ?
Any help would be appreciated.
As you mentioned, you need to play with your data and use-case. You will have better picture.
Some decisions required as below.
Decide the number of documents you will have in near future. If you will have 1m documents in an year, then try with at least 3m data
Decide the number of indices required.
Decide the number of writes, reads per second.
Decide the size of documents per category.
Decide the query pattern.
Some inputs based on the requirements
If you have more writes with more indices, then single monolithic collection will be slower as multiple indices needs to be updated.
As you have different set of fields per category, you could try with multiple collections.
There is $unionWith to combine data from multiple collections. But do check the performance it purely depends on the above decisions. Note this open issue also.
If you decide to go with monolithic collection, defer the sharding. Implement this once you found that queries are slower.
If you have more writes on the same document, writes will be executed sequentially. It will slow down your read also.
Think of reclaiming the disk space when more data is cleared from the collections. Multiple collections do good here.
The point which forces me to suggest monolithic collections is that I'd need to query all the categories at the same time. You may need to add more categories, but combining all of them in single response would not be better in terms of performance.
As you don't really have a join use case like in RDBMS, you can go with single monolithic collection from model point of view. I doubt you could have a join key.
If any of my points are incorrect, please let me know.
To SQL or to NoSQL?
I think that before you implement this in NoSQL, you should ask yourself why you are doing that. I quite like NoSQL but some data is definitely a better fit to that model than others.
The data you are describing is a classic case for a relational SQL DB. That's fine if it's a hobby project and you want to try NoSQL, but if this is for a production environment or client, you are likely making the situation more difficult for them.
Relational or non-relational?
You mention common fields across all products. If you wish to update these fields and have those updates reflected in all products, then you have relational data.
Background
It may be worth reading Sarah Mei 2013 article about this. Skip to the section "How MongoDB Stores Data" and read from there. Warning: the article is called "Why You Should Never Use MongoDB" and is (perhaps intentionally) somewhat biased against Mongo, so it's important to read this through the correct lens. The message you should get from this article is that MongoDB is not a good fit for every data type.
Two strategies for handling relational data in Mongo:
every time you update one of these common fields, update every product's document with the new common field data. This is generally only ok if you have few updates or few documents, but not both.
use references and do joins.
In Mongo, joins typically happen code-side (multiple db calls)
In Arango (and in other graph dbs, as well as some key-value stores), the joins happen db-side (single db call)
Decisions
These are important factors to consider when deciding which DB to use and how to model your data
I've used MongoDB, ArangoDB and Neo4j.
Mongo definitely has the best tooling and it's easy to find help, but I don't believe it's good fit in this case
Arango is quite pleasant to work with, but doesn't yet have the adoption that it deserves
I wouldn't recommend Neo4j to anyone looking for a NoSQL solution, as its nodes and relations only support flat properties (no nesting, so not real documents)
It may also be worth considering MariaDB or Postgres
I want to store featured products like staff picks, featured products of each category in my system that will hold at most 10 documents. My priority is read performance over write performance but I also want to have an efficient storage system and I have three ways to do it in my mind:
Create a boolean field such as is_bestseller, is_staffpick in Products schema and query for it.
I think this is the simplest way to do it but I think it would require an additional query to check if the at most 10 limit has been reached.
Create a FeaturedProducts schema that holds references of product ids.
This is useful in the sense that if I want to add some additional info such as a featured product within the featured products then I could simply add a field in this schema. It would also be easy to check the at most 10 documents limit. I think this makes it more scalable but at the cost of performance?
Create a FeaturedProducts schema that will hold all the needed data.
I think performance wise this would be the best but I'm not sure if this is an efficient way to store data. Basically, I would just duplicate the data of a product and store it. Obviously, if I have to update product details then I have to update it in two places now but the read-to-write ratio heavily favors reading so I am willing to do this even if it's gonna require more logic regarding updating and deleting products. Also it would be easy to set at most 10 documents limit.
I tried to look for some examples regarding featured products but couldn't find anything useful. I am not sure what the best practice is here and which way to go about so any kind of help is appreciated.
The rule of thumb when modeling your data in MongoDB is:
Data that is accessed together should be stored together.
Havin that in mind I considered The Extended Reference Pattern a great options for you use case, here is a example from the MongoDB Blog.
Considere an e-commerce application where you have user collection, order collection and others. Where users and orders has a 1-N relation, embedding all of the information about a customer for each order just to reduce the JOIN operation results in a lot of duplicated information.
Instead of duplicating all of the information on the customer, we only copy the fields we access frequently.
This schema will have height read performance, because all the information will be store in a single document, at the cost of some duplicate data, but that is not completely bad considering that it can sever as history data.
Useful information:
Patterns
Design Anti-pattern
A potential solution is to use an index here so that you can maximize your query performance. You would create an additional boolean flag (as you indicated in your first solution) then index that query, with a cursor that limits the number of returned values.
For more ways to increase your query performance check out the official Mongo docs here. If you're curious as to how much more performant your queries become, you can use Mongo's explain() method to get benchmarks (more info here) and compare approaches.
Best of luck!
NoSQL noob here. I'm building an app using Firestore NoSQL. I'm looping through items where every item has a owner id (creator user id).
I want to display owner's name on the listing page. In traditional SQL, i have foreign key so I can just make reference to say, Item.Owner.FirstName
What's the best practice in NoSQL? Should I be saving owner name as a field at the time of saving the item? or do a lookup of each owner id to get user object whilst i'm looping through items?
Second option sounds expensive so i'm assuming 1st way is the way to go. Unless there's a better, more accepted way?
Both will work. You either reference the data in the other document in whatever way you see fit, or you duplicate information into the document that you intend to query to build the display. You just have to decide what which problem you want to deal with:
If you duplicate data among documents (known as "denormalization"), then you'll have to put effort into keeping them all up to date with each other, if that's what you require. So, writing one document might actually turn into writing multiple documents.
If you normalize your data with no duplication, then each of your queries will require more queries to get the related data from other documents. This could result in a drop in performance and an increase in cost for apps with heavy read loads.
Since we don't know the performance requirements and usage behavior of your app, there is no way to give specific advice. You will have to think carefully about which problem you want to have, perhaps based on complexity, performance, and overall cost.
I'm storing two collections in a MongoDB database:
==Websites==
id
nickname
url
==Checks==
id
website_id
status
I want to display a list of check statuses with the appropriate website nickname.
For example:
[Google, 200] << (basically a join in SQL-world)
I have thousands of checks and only a few websites.
Which is more efficient?
Store the nickname of the website within the "check" directly. This means if the nickname is ever changed, I'll have to perform a mass update of thousands of documents.
Return a multidimensional array where the site ID is the key and the nickname is the value. This is to be used when iterating through the list of checks.
I've read that #1 isn't too bad (in the NoSQL) world and may, in fact, be preferred? True?
If it's only a few websites I'd go with option 1 - not as clean and normalized as in the relational/SQL world but it works and much less painful than trying to emulate joins with MongoDB. The thing to remember with MongoDB or any other NoSQL database is that you are generally making some kind of trade off - nothing is for free. I personally really value the schema-less document oriented data design and for the applications I use it for I readily make the trade-offs (like no joins and transactions).
That said, this is a trade-off - so one thing to always be asking yourself in this situation is why am I using MongoDB or some other NoSQL database? Yes, it's trendy and "hot", but I'd make certain that what you are doing makes sense for a NoSQL approach. If you are spending a lot of time working around the lack of joins and foreign keys, no transactions and other things you're used to in the SQL world I'd think seriously about whether this is the best fit for your problem.
You might consider a 3rd option: Get rid of the Checks collection and embed the checks for each website as an array in each Websites document.
This way you avoid any JOINs and you avoid inconsistencies, because it is impossible for a Check to exist without the Website it belongs to.
This, however, is only recommended when the checks array for each document stays relatively constant over time and doesn't grow constantly. Rapidly growing documents should be avoided in MongoDB, because everytime a document doubles its size, it is moved to a different location in the physical file it is stored in, which slows down write-operations. Also, MongoDB has a 16MB limit per document. This limit exists mostly to discourage growing documents.
You haven't said what a Check actually is in your application. When it is a list of tasks you perform periodically and only make occasional changes to, there would be nothing wrong with embedding. But when you collect the historical results of all checks you ever did, I would rather recommend to put each result(set?) in an own document to avoid document growth.
I'm interested in document-oriented databases, and I'd like to play with MongoDB. So I started a fairly simple project (an issue tracker), but am having hard times thinking in a non-relational way.
My problems:
I have two objects that relate to each other (e.g. issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}} - here I have a user related to the issue). Should I create another document 'user' and reference it in 'issue' document by its id (like in relational databases), or should I leave all the user's data in the subdocument?
If I have objects (subdocuments) in a document, can I update them all in a single query?
I'm totally new to document-oriented databases, and right now I'm trying to develop sort of a CMS using node.js and mongodb so I'm facing the same problems as you.
By trial and error I found this rule of thumb: I make a collection for every entity that may be a "subject" for my queries, while embedding the rest inside other objects.
For example, comments in a blog entry can be embedded, because usually they're bound to the entry itself and I can't think about a useful query made globally on all comments. On the other side, tags attached to a post might deserve their own collection, because even if they're bound to the post, you might want to reason globally about all the tags (for example making a list of trending topics).
In my mind this is actually pretty simple. Embedded documents can only be accessed via their master document. If you can envision a need to query an object outside the context of the master document, then don't embed it. Use a ref.
For your example
issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}}
I would make issue and reporter each their own document, and reference the reporter in the issue. You could also reference a list of issues in reporter. This way you won't duplicate reporters in issues, you can query them each separately, you can query reporter by issue, and you can query issues by reporter. If you embed reporter in issue, you can only query the one way, reporter by issue.
If you embed documents, you can update them all in a single query, but you have to repeat the update in each master document. This is another good reason to use reference documents.
The beauty of mongodb and other "NoSQL" product is that there isn't any schema to design. I use MongoDB and I love it, not having to write SQL queries and awful JOIN queries! So to answer your two questions.
1 - If you create multiple documents, you'll need make two calls to the DB. Not saying it's a bad thing but if you can throw everything into one document, why not? I recall when I used to use MySQL, I would create a "blog" table and a "comments" table. Now, I append the comments to the record in the same collection (aka table) and keep building on it.
2 - Yes ...
The schema design in Document-oriented DBs can seems difficult at first, but building my startup with Symfony2 and MongoDB I've found that the 80% of the time is just like with a relational DB.
At first, think it like a normal db:
To start, just create your schema as you would with a relational Db:
Each Entity should have his own Collection, especially if you'll need to paginate the documents in it.
(in Mongo you can somewhat paginate nested document arrays, but the capabilities are limited)
Then just remove overly complicated normalization:
do I need a separate category table? (simply write the category in a column/property as a string or embedded doc)
Can I store comments count directly as an Int in the Author collection? (then update the count with an event, for example in Doctrine ODM)
Embedded documents:
Use embedded documents only for:
clearness (nested documents like: addressInfo, billingInfo in the User collection)
to store tags/categories ( eg: [ name: "Sport", parent: "Hobby", page: "/sport"
] )
to store simple multiple values (for eg. in User collection: list of specialties, list of personal websites)
Don't use them when:
the parent Document will grow too large
when you need to paginate them
when you feel the entity is important enough to deserve his own collection
Duplicate values across collection and precompute counts:
Duplicate some columns/attributes values from a Collection to another if you need to do a query with each values in the where conditions. (remember there aren't joins)
eg: In the Ticket collection put also the author name (not only the ID)
Also if you need a counter (number of tickets opened by user, by category, ecc), precompute them.
Embed references:
When you have a One-to-Many or Many-to-Many reference, use an embedded array with the list of the referenced document ids (see MongoDB DB Ref).
You'll need to use an Event again to remove an id if the referenced document get deleted.
(There is an extension for Doctrine ODM if you use it: Reference Integrity)
This kind of references are directly managed by Doctrine ODM: Reference Many
Its easy to fix errors:
If you find late that you have made a mistake in the schema design, its quite simply to fix it with few lines of Javascript to run directly in the Mongo console.
(stored procedures made easy: no need of complex migration scripts)
Waring: don't use Doctrine ODM Migrations, you'll regret that later.
Redid this answer since the original answer took the relation the wrong way round due to reading incorrectly.
issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}}
As to whether embedding some important information about the user (creator) of the ticket is a wise decision or not depends upon the system specifics.
Are you giving these users the ability to login and report issues they find? If so then it is likely you might want to factor that relation off to a user collection.
On the other hand, if that is not the case then you could easily get away with this schema. The one problem I see here is if you wish to contact the reporter and their job role has changed, that's somewhat awkward; however, that is a real world dilemma, not one for the database.
Since the subdocument represents a single one-to-one relation to a reporter you also should not suffer fragmentation problems mentioned in my original answer.
There is one glaring problem with this schema and that is duplication of changing repeating data (Normalised Form stuff).
Let's take an example. Imagine you hit the real world dilemma I spoke about earlier and a user called Nigel wants his role to reflect his new job position from now on. This means you have to update all rows where Nigel is the reporter and change his role to that new position. This can be a lengthy and resource consuming query for MongoDB.
To contradict myself again, if you were to only have maybe 100 tickets (aka something manageable) per user then the update operation would likely not be too bad and would, in fact, by manageable for the database quite easily; plus due to the lack of movement (hopefully) of the documents this would be a completely in place update.
So whether this should be embedded or not depends heavily upn your querying and documents etc, however, I would say this schema isn't a good idea; specifically due to the duplication of changing data across many root documents. Technically, yes, you could get away with it but I would not try.
I would instead split the two out.
If I have objects (subdocuments) in a document, can I update them all in a single query?
Just like the relation style in my original answer, yes and easily.
For example, let's update the role of Nigel to MD (as hinted earlier) and change the ticket status to completed:
db.tickets.update({'reporter.username':'Nigel'},{$set:{'reporter.role':'MD', status: 'completed'}})
So a single document schema does make CRUD easier in this case.
One thing to note, stemming from your English, you cannot use the positional operator to update all subdocuments under a root document. Instead it will update only the first found.
Again hopefully that makes sense and I haven't left anything out. HTH
Original Answer
here I have a user related to the issue). Should I create another document 'user' and reference it in 'issue' document by its id (like in relational databases), or should I leave all the user's data in the subdocument?
This is a considerable question and requires some background knowledge before continuing.
First thing to consider is the size of a issue:
issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}}
Is not very big, and since you no longer need the reporter information (that would be on the root document) it could be smaller, however, issues are never that simple. If you take a look at the MongoDB JIRA for example: https://jira.mongodb.org/browse/SERVER-9548 (as a random page that proves my point) the contents of a "ticket" can actually be quite considerable.
The only way you would gain a true benefit from embedding the tickets would be if you could store ALL user information in a single 16 MB block of contigious sotrage which is the maximum size of a BSON document (as imposed by the mongod currently).
I don't think you would be able to store all tickets under a single user.
Even if you was to shrink the ticket to, maybe, a code, title and a description you could still suffer from the "swiss cheese" problem caused by regular updates and changes to documents in MongoDB, as ever this: http://www.10gen.com/presentations/storage-engine-internals is a good reference for what I mean.
You would typically witness this problem as users add multiple tickets to their root user document. The tickets themselves will change as well but maybe not in a drastic or frequent manner.
You can, of course, remedy this problem a bit by using power of 2 sizes allocation: http://docs.mongodb.org/manual/reference/command/collMod/#usePowerOf2Sizes which will do exactly what it says on the tin.
Ok, hypothetically, if you were to only have code and title then yes, you could store the tickets as subdocuments in the root user without too many problems, however, this is something that comes down to specifics that the bounty assignee has not mentioned.
If I have objects (subdocuments) in a document, can I update them all in a single query?
Yes, quite easily. This is one thing that becomes easier with embedding. You could use a query like:
db.users.update({user_id:uid,'tickets.code':'asdf-1'}, {$set:{'tickets.$.title':'Oh NOES'}})
However, to note, you can only update ONE subdocument at a time using the positional operator. As such this means you cannot, in a single atomic operation, update all ticket dates on a single user to 5 days in the future.
As for adding a new ticket, that is quite simple:
db.users.update({user_id:uid},{$push:{tickets:{code:asdf-1,title:"Whoop"}}})
So yes, you can quite simply, depending on your queries, update the entire users data in a single call.
That was quite a long answer so hopefully I haven't missed anything out, hope it helps.
I like MongoDB, but I have to say that I will use it a lot more soberly in my next project.
Specifically, I have not had as much luck with the Embedded Document facility as people promise.
Embedded Document seems to be useful for Composition (see UML Composition), but not for aggregation. Leaf nodes are great, anything in the middle of your object graph should not be an embedded document. It will make searching and validating your data more of a struggle than you'd want.
One thing that is absolutely better in MongoDB is your many-to-X relationships. You can do a many-to-many with only two tables, and it's possible to represent a many-to-one relationship on either table. That is, you can either put 1 key in N rows, or N keys in 1 row, or both. Notably, queries to accomplish set operations (intersection, union, disjoint set, etc) are actually comprehensible by your coworkers. I have never been satisfied with these queries in SQL. I often have to settle for "two other people will understand this".
If you've ever had your data get really big, you know that inserts and updates can be constrained by how much the indexes cost. You need fewer indexes in MongoDB; an index on A-B-C can be used to query for A, A & B, or A & B & C (but not B, C, B & C or A & C). Plus the ability to invert a relationship lets you move some indexes to secondary tables. My data hasn't gotten big enough to try, but I'm hoping that will help.