Mass Update NoSQL Documents: Bad Practice? - mongodb

I'm storing two collections in a MongoDB database:
==Websites==
id
nickname
url
==Checks==
id
website_id
status
I want to display a list of check statuses with the appropriate website nickname.
For example:
[Google, 200] << (basically a join in SQL-world)
I have thousands of checks and only a few websites.
Which is more efficient?
Store the nickname of the website within the "check" directly. This means if the nickname is ever changed, I'll have to perform a mass update of thousands of documents.
Return a multidimensional array where the site ID is the key and the nickname is the value. This is to be used when iterating through the list of checks.
I've read that #1 isn't too bad (in the NoSQL) world and may, in fact, be preferred? True?

If it's only a few websites I'd go with option 1 - not as clean and normalized as in the relational/SQL world but it works and much less painful than trying to emulate joins with MongoDB. The thing to remember with MongoDB or any other NoSQL database is that you are generally making some kind of trade off - nothing is for free. I personally really value the schema-less document oriented data design and for the applications I use it for I readily make the trade-offs (like no joins and transactions).
That said, this is a trade-off - so one thing to always be asking yourself in this situation is why am I using MongoDB or some other NoSQL database? Yes, it's trendy and "hot", but I'd make certain that what you are doing makes sense for a NoSQL approach. If you are spending a lot of time working around the lack of joins and foreign keys, no transactions and other things you're used to in the SQL world I'd think seriously about whether this is the best fit for your problem.

You might consider a 3rd option: Get rid of the Checks collection and embed the checks for each website as an array in each Websites document.
This way you avoid any JOINs and you avoid inconsistencies, because it is impossible for a Check to exist without the Website it belongs to.
This, however, is only recommended when the checks array for each document stays relatively constant over time and doesn't grow constantly. Rapidly growing documents should be avoided in MongoDB, because everytime a document doubles its size, it is moved to a different location in the physical file it is stored in, which slows down write-operations. Also, MongoDB has a 16MB limit per document. This limit exists mostly to discourage growing documents.
You haven't said what a Check actually is in your application. When it is a list of tasks you perform periodically and only make occasional changes to, there would be nothing wrong with embedding. But when you collect the historical results of all checks you ever did, I would rather recommend to put each result(set?) in an own document to avoid document growth.

Related

NoSQL how to lookup id in a collection

NoSQL noob here. I'm building an app using Firestore NoSQL. I'm looping through items where every item has a owner id (creator user id).
I want to display owner's name on the listing page. In traditional SQL, i have foreign key so I can just make reference to say, Item.Owner.FirstName
What's the best practice in NoSQL? Should I be saving owner name as a field at the time of saving the item? or do a lookup of each owner id to get user object whilst i'm looping through items?
Second option sounds expensive so i'm assuming 1st way is the way to go. Unless there's a better, more accepted way?
Both will work. You either reference the data in the other document in whatever way you see fit, or you duplicate information into the document that you intend to query to build the display. You just have to decide what which problem you want to deal with:
If you duplicate data among documents (known as "denormalization"), then you'll have to put effort into keeping them all up to date with each other, if that's what you require. So, writing one document might actually turn into writing multiple documents.
If you normalize your data with no duplication, then each of your queries will require more queries to get the related data from other documents. This could result in a drop in performance and an increase in cost for apps with heavy read loads.
Since we don't know the performance requirements and usage behavior of your app, there is no way to give specific advice. You will have to think carefully about which problem you want to have, perhaps based on complexity, performance, and overall cost.

Mongodb: about performance and schema design

After learning about performance and schema design in MongoDB, I still can´t figure out how would I make the schema design in an application when performance is a must.
Let´s imagine if we have to make YouTube to work with MongoDB as its database. How would you make the schema?
OPTION 1: two collections (videos collection and comments collection)
Pros: adding, deleting and editing comments affects only the comments collection, therefore these operations would be more efficient.
Cons: Retrieving videos and comments would be 2 different queries to the database, one for videos and one for comments.
OPTION 2: single collection (videos collection with the comments embedded)
Pros: You retrieve videos and its comments with a single query.
Cons: Adding, deleting and editing comments affect the video Document, therefore these operations would be less efficient.
So what do you think? Are my guesses true?
As a caller in the desert, I have to say that embedding should only be used under very special circumstances:
The relation is a "One-To(-Very)-Few" and it is absolutely sure that no document will ever exceed this limit. A good example would be the relation between "users" and "email addresses" – a user is unlikely to have millions of them and there isn't even a problem with artificial limits: setting the maximum number of addresses as user can have to, say 50 hardly would cause a problem. It may be unlikely that a video gets millions of comments, but you don't want to impose an artificial limit on it, right?
Updates do not happen very often. If documents increase in size beyond a certain threshold, they might be moved, since documents are guaranteed to be never fragmented. However, document migrations are expensive and you want to prevent them.
Basically, all operations on comments become more complicated and hence more expensive - a bad choice. KISS!
I have written an article about the above, which describes the respective problems in greater detail.
And furthermore, I do not see any advantage in having the comments with the videos. The questions to answer would be
For a given user, what are the videos?
What are the newest videos (with certain tags)?
For a given video, what are the comments?
Note that the only connection between videos and comments here is about a given video, so you already have the _id or something else to positively identify the video. Furthermore, you don't want to load all comments at once, especially if you have a lot of them, since this would decrease UX because of long load times.
Let's say it is the _id. So, with it, you'd be able to have paged comments easily:
db.comments.find({"video_id": idToFind})
.skip( (page-1) * pageSize )
.limit( pageSize )
hth
As usual the answer is, it depends. As as a rule of thumb you should favour embedding, unless you need to regularly query the embedded objects on its own or if the embedded array is likely to get too large(>~100 records). Using this guideline, there are a few questions you need to ask regarding your application.
How is your application going to access the data ? Are you only ever going to show the comments on the same page as the associated video ? Or do you want to provide the options to show all comments for a given user across all movies ? The first scenario favours embedding (one collection), whereas you probably would be better of with two collections in the second scenario.
Secondly, how many comments do you expect for each video ? Taking the analogy of IMDB, you could easily expect more than 100 comments for a popular video, so that means you are better off creating two separate collections as the embedded array of comments would grow large quite quickly. I wouldn't be too concerned about the overhead of an application join, they are generally comparable in speed compared to a server-side join in a relational database provided your collections are properly indexed.
Finally, how often are users going to update their comments after their initial post ? If you lock the comments after 5 minutes like on StackOverflow users may not update their comments very often. In that case the overhead of updating or deleting comments in the video collection will be negligible and may even be outweigh the cost of performing a second query in a separate comments collection.
You should use embedded for better performance. Your I/O's will be lesser. In worst case? it might take a bit long to persist the document in the DB but it wont take much time to retrieve it.
You should either compromise persistence over reads or vise versa depending on your application needs.
Hence it is important to choose your db wisely.

Are there any advantages to using a custom _id for documents in MongoDB?

Let's say I have a collection called Articles. If I were to insert a new document into that collection without providing a value for the _id field, MongoDB will generate one for me that is specific to the machine and the time of the operation (e.g. sdf4sd89fds78hj).
However, I do have the ability to pass a value for MongoDB to use as the value of the _id key (e.g. 1).
My question is, are there any advantages to using my own custom _ids, or is it best to just let Mongo do its thing? In what scenarios would I need to assign a custom _id?
Update
For anyone else that may find this. The general idea (as I understand it) is that there's nothing wrong with assigning your own _ids, but it forces you to maintain unique values within your application layer, which is a PITA, and requires an extra query before every insert to make sure you don't accidentally duplicate a value.
Sammaye provides an excellent answer here:
Is it bad to change _id type in MongoDB to integer?
Advantages with generating your own _ids:
You can make them more human-friendly, by assigning incrementing numbers: 1, 2, 3, ...
Or you can make them more human-friendly, using random strings: t3oSKd9q
(That doesn't take up too much space on screen, could be picked out from a list, and could potentially be copied manually if needed. However you do need to make it long enough to prevent collisions.)
If you use randomly generated strings they will have an approximately even sharding distribution, unlike the standard mongo ObjectIds, which tends to group records created around the same time onto the same shard. (Whether that is helpful or not really depends on your sharding strategy.)
Or you may like to generate your own custom _ids that will group related objects onto one shard, e.g. by owner, or geographical region, or a combination. (Again, whether that is desirable or not depends on how you intend to query the data, and/or how rapidly you are producing and storing it. You can also do this by specifying a shard key, rather than the _id itself. See the discussion below.)
Advantages to using ObjectIds:
ObjectIds are very good at avoiding collisions. If you generate your own _ids randomly or concurrently, then you need to manage the collision risk yourself.
ObjectIds contain their creation time within them. That can be a cheap and easy way to retain the creation date of a document, and to sort documents chronologically. (On the other hand, if you don't want to expose/leak the creation date of a document, then you must not expose its ObjectId!)
The nanoid module can help you to generate short random ids. They also provide a calculator which can help you choose a good id length, depending on how many documents/ids you are generating each hour.
Alternatively, I wrote mongoose-generate-unique-key for generating very short random ids (provided you are using the mongoose library).
Sharding strategies
Note: Sharding is only needed if you have a huge number of documents (or very heavy documents) that cannot be managed by one server. It takes quite a bit of effort to set up, so I would not recommend worrying about it until you are sure you actually need it.
I won't claim to be an expert on how best to shard data, but here are some situations we might consider:
An astronomical observatory or particle accelerator handles gigabytes of data per second. When an interesting event is detected, they may want to store a huge amount of data in only a few seconds. In this case, they probably want an even distribution of documents across the shards, so that each shard will be working equally hard to store the data, and no one shard will be overwhelmed.
You have a huge amount of data and you sometimes need to process all of it at once. In this case (but depending on the algorithm) an even distribution might again be desirable, so that all shards can work equally hard on processing their chunk of the data, before combining the results at the end. (Although in this scenario, we may be able to rely on MongoDB's balancer, rather than our shard key, for the even distribution. The balancer runs in the background after data has been stored. After collecting a lot of data, you may need to leave it to redistribute the chunks overnight.)
You have a social media app with a large amount of data, but this time many different users are making many light queries related mainly to their own data, or their specific friends or topics. In this case, it doesn't make sense to involve every shard whenever a user makes a little query. It might make sense to shard by userId (or by topic or by geographical region) so that all documents belonging to one user will be stored on one shard, and when that user makes a query, only one shard needs to do work. This should leave the other shards free to process queries for other users, so many users can be served at once.
Sharding documents by creation time (which the default ObjectIds will give you) might be desirable if you have lots of light queries looking at data for similar time periods. For example many different users querying different historical charts.
But it might not be so desirable if most of your users are querying only the most recent documents (a common situation on social media platforms) because that would mean one or two shards would be getting most of the work. Distributing by topic or perhaps by region might provide a flatter overall distribution, whilst also allowing related documents to clump together on a single shard.
You may like to read the official docs on this subject:
https://docs.mongodb.com/manual/sharding/#shard-key-strategy
https://docs.mongodb.com/manual/core/sharding-choose-a-shard-key/
I can think of one good reason to generate your own ID up front. That is for idempotency. For example so that it is possible to tell if something worked or not after a crash. This method works well when using re-try logic.
Let me explain. The reason people might consider re-try logic:
Inter-app communication can sometimes fail for different reasons, (especially in a microservice architecture). The app would be more resilient and self-healing by codifying the app to re-try and not give up right away. This rides over odd blips that might occur without the consumer ever being affected.
For example when dealing with mongo, a request is sent to the DB to store some object, the DB saves it, but just as it is trying to respond to the client to say everything worked fine, there is a network blip for whatever reason and the “OK” is never received. The app assumes it didn't work and so the app may end up re-trying the same data and storing it twice, or worse it just blows up.
Creating the ID up front is an easy, low overhead way to help deal with re-try logic. Of course one could think of other schemes too.
Although this sort of resiliency may be overkill in some types of projects, it really just depends.
I have used custom ids a couple of times and it was quite useful.
In particular I had a collection where I would store stats by date, so the _id was actually a date in a specific format. I did that mostly because I would always query by date. Keep in mind that using this approach can simplify your indexes as no extra index is needed, the basic cursor is sufficient.
Sometimes the ID is something more meaningful than a randomly generated one. For example, a user collection may use the email address as the _id instead. In my project I generate IDs that are much shorter than the ones Mongodb uses so that the ID shown in the URL is much shorter.
I'll use an example , i created a property management tool and it had multiple collections. For simplicity some fields would be duplicated for example the payment. And when i needed to update these record it had to happen simultaneously across all collections it appeared in so i would assign them a custom payment id so when the delete/query action is performed it changes all instances of it database wide

MongoDB - One Collection Using Indexes

Ok so the more and more I develop in Mongodb i start to wonder about the need for multiple collections vs having one large collection with indexes (since columns and fields can be different for each document unlike tabular data). If i am trying to develop in the most efficient way possible (meaning less code and reusable code) then can I use one collection for all documents and just index on a field. By having all documents in one collection with indexes then i can reuse all my form processing code and other code since it will all be inserting into the same collection.
For Example:
Lets say i am developing a contact manager and I have two types of contacts "individuals" and "businesses". My original thought was to create a collection called individuals and a second collection called businesses. But that was because im used to developing in sql where yes this would be appropriate since columns would be different for each table. The more i started to think about the flexibility of document dbs the more I started to think, "do I really need two collections for this?" If i just add a field to each document called "contact type" and index on that, do i really need two collections? Since the fields/columns in each document do not have to be the same for all (like in sql) then each document can have their own fields as long as i have a "document type" field and an index on that field.
So then i took that concept and started to think, if i only need one collection for "individuals" and "businesses" then do i even need a separate collection for "Users" or "Contact History" or any other data. In theory couldn't i build the entire solution in once collection and just have a field in each document that specifield the "type" and index on it such as "Users", "Individual Contact", "Business Contacts", "Contact History", etc, and if it is a document related to another document i can index on the "parent key/foreign" Id field...
This would allow me to code the front end dynamically since the form processing code would all be the same (inserting into the same collection). This would save a lot of coding but i want to make sure by using indexes and secondary indexes that the db would still run fast and not cause future problems as the collection grew. As you can imagine, if everything was in one collection there might be hundreds of thousands even millions of documents in this collection as the user base grows but it would have indexes and secondary indexes to optimize performance.
My question is: Is this a common method mongodb developers use? Why or why not? What are the downfalls, if any? If this is a commonly used method, please also give any positives to using this method. thank you.
This is a really big point in Mongo and the answer is a little bit more of an art than science. Having one collection full of gigantic documents is definitely an anti-pattern because it works against many of Mongo's features.
For instance, when retrieving documents, you can only retrieve a whole document out of a collection (not entirely true, but mostly). So if you have huge documents, you're retrieving huge documents each time. Also, having huge documents makes sharding less flexible since only the top level documents are indexed (and hence, sharded) in each collection. You can index values deep into a document, but the index value is associated with the top level document.
At the same time, going purely relational is also an anti-pattern because you've lost a lot of the referential integrity by going to Mongo in the first place. Also, all joins are done in application memory, so each one requires a full round-trip (slow).
So the answer is to do something in between. I'm thinking you'll probably want a collection for individuals and a different collection for businesses in this case. I say this because it seem like businesses have enough meta-data associated that it could bulk up a lot. (Also, I individual-business relationship seems like a many-to-many). However, an individual might have a Name object (with first and last properties). That would be a bad idea to make Name into a separate collection.
Some info from 10gen about schema design: http://www.mongodb.org/display/DOCS/Schema+Design
EDIT
Also, Mongo has limited support for transactions - in the form of atomic aggregates. When you insert an object into mongo, the entire object is either inserted or not inserted. So you're application domain requires consistency between certain objects, you probably want to keep them in the same document/collection.
For example, consider an application that requires that a User always has a Name object (containing FirstName, LastName, and MiddleInitial). If a User was somehow inserted with no corresponding Name, the data would be considered to be corrupted. In an RDBMS you would wrap a transaction around the operations to insert User and Name. In Mongo, we make sure Name is in the same document (aggregate) as User to achieve the same effect.
Your example is a little less clear, since I don't understand the business cases. One thing that does come to mind is that Mongo has excellent support for inheritance. It might make sense to put all users, individuals, and potentially businesses into the same collection (depending on how the application is modeled). If one individual has many contacts, you probably want individuals to have an array of IDs. If your application requires that you get a quick preview of contacts, you might consider duplicating part of an individual and storing an array of contact objects.
If you're used to RDBMS thinking, you probably think all your data always has to be consistent. The truth is, that's probably not entirely true. This concept of applying atomic aggregates to the domain has been preached heavily by the DDD community recently. When you look at your domain in depth, like your business users do, the consistency boundaries should become distinct.
MongoDB, and NoSQL in general, is about de-normalising data and about reducing joins. It goes against normal SQL thinking.
In your case, I don't see any reason why you would want to have separate collections because it introduces unnecessary complexity and performance overhead. Consider, for example, if you wanted to have a screen that displayed all contacts, in alphabetical order. If you have one single collection for contacts, then its really easy, but if you have two collections it becomes a more complicated proposition.
Where I would have multiple collections is if your application had multiple users storing contacts. I would then have one collection for each user. This makes it so easy to extract out that users contacts.

MongoDB - Denormalization / model opinion

I've been getting in to mongo, but coming from RDBMS background facing the probably obvious questions with regards to denormalisation and general data modelling.
If I have a document type with an array of sub docs, each sub doc has a status code.
In The relational world I would add a foreign key to the record, StatusId, simple.
In mongodb, would you denormalise the key pieces of data from the "status" e.g. Code and desc and hold objectid referencing another collection of proper status. I guess the next question is one of design, if the status doc is modified I'd then need to modified the denormalised data?
Another question on the same theme is how would you model a transaction table, say I have events and people, the events could be quite granular, say time sheets which over time may lead to many records. Based on what I've seen, this would seem like a good candidate for a child / sub array of docs, of course that could be indexed for speed.
Therefore is it possible to query / find just the sub array or part of it? And given the 16mb limit for doc size, and I just limited the transaction history of the person? Or should the transaction history be a separate collection with a onjid referencing the person?
Thanks for any input
Sam
Or should the transaction history be a separate collection with a onjid referencing the person?
Probably, I think this S/O question may help you understand why.
if the status doc is modified I'd then need to modified the denormalised data?
Yes this is standard trade-off in MongoDB. You will encounter this question a lot. You may need to leverage a Queue structure to ensure that data remains consistent across multiple collections.
Therefore is it possible to query / find just the sub array or part of it?
This is a tough one specific to MongoDB. With the basic query syntax, you have only limited support for dealing with arrays of objects. The new "Aggregration Framework" is actually much better here, but it's not available in a stable build.
All your "how to model this or that" can't really be answered, because good schema design depends on so many factors (access patters, hardware characteristics, is cluster used, etc).
if the status doc is modified I'd then need to modified the denormalised data?
Usually yes, that's the drawback of denormalisation. But sometimes you don't have to (some social network site stores user name with a photo tag and doesn't update it when user changes his name).
to query / find just the sub array or part of it?
It is not currently possible to fetch only a part of array (unless using map/reduce, of course).
And given the 4mb limit
Where did you get this from? It's 16mb at the moment.
While it's true that schema design does take into account many factors, the need to denormalize data usually comes up somewhere. I tend to take advantage of denormalization in my apps that use MongoDB because I feel it lends itself well storing denormalized data:
no additional column maintenance
support for hashes and arrays as field types (perfect for storing denormalized fields)
speedy, non-blocking writes make syncing data less expensive
document size growth only marginally affects performance up to limits (for the most part)
There are a few gems that help you manage denormalized data, including setting it up and keeping it in sync. If you're using Mongoid, you try mongoid_alize. DISCLAIMER: I am the author and maintainer of mongoid_alize.