Relations in Document-oriented database? - mongodb

I'm interested in document-oriented databases, and I'd like to play with MongoDB. So I started a fairly simple project (an issue tracker), but am having hard times thinking in a non-relational way.
My problems:
I have two objects that relate to each other (e.g. issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}} - here I have a user related to the issue). Should I create another document 'user' and reference it in 'issue' document by its id (like in relational databases), or should I leave all the user's data in the subdocument?
If I have objects (subdocuments) in a document, can I update them all in a single query?

I'm totally new to document-oriented databases, and right now I'm trying to develop sort of a CMS using node.js and mongodb so I'm facing the same problems as you.
By trial and error I found this rule of thumb: I make a collection for every entity that may be a "subject" for my queries, while embedding the rest inside other objects.
For example, comments in a blog entry can be embedded, because usually they're bound to the entry itself and I can't think about a useful query made globally on all comments. On the other side, tags attached to a post might deserve their own collection, because even if they're bound to the post, you might want to reason globally about all the tags (for example making a list of trending topics).

In my mind this is actually pretty simple. Embedded documents can only be accessed via their master document. If you can envision a need to query an object outside the context of the master document, then don't embed it. Use a ref.
For your example
issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}}
I would make issue and reporter each their own document, and reference the reporter in the issue. You could also reference a list of issues in reporter. This way you won't duplicate reporters in issues, you can query them each separately, you can query reporter by issue, and you can query issues by reporter. If you embed reporter in issue, you can only query the one way, reporter by issue.
If you embed documents, you can update them all in a single query, but you have to repeat the update in each master document. This is another good reason to use reference documents.

The beauty of mongodb and other "NoSQL" product is that there isn't any schema to design. I use MongoDB and I love it, not having to write SQL queries and awful JOIN queries! So to answer your two questions.
1 - If you create multiple documents, you'll need make two calls to the DB. Not saying it's a bad thing but if you can throw everything into one document, why not? I recall when I used to use MySQL, I would create a "blog" table and a "comments" table. Now, I append the comments to the record in the same collection (aka table) and keep building on it.
2 - Yes ...

The schema design in Document-oriented DBs can seems difficult at first, but building my startup with Symfony2 and MongoDB I've found that the 80% of the time is just like with a relational DB.
At first, think it like a normal db:
To start, just create your schema as you would with a relational Db:
Each Entity should have his own Collection, especially if you'll need to paginate the documents in it.
(in Mongo you can somewhat paginate nested document arrays, but the capabilities are limited)
Then just remove overly complicated normalization:
do I need a separate category table? (simply write the category in a column/property as a string or embedded doc)
Can I store comments count directly as an Int in the Author collection? (then update the count with an event, for example in Doctrine ODM)
Embedded documents:
Use embedded documents only for:
clearness (nested documents like: addressInfo, billingInfo in the User collection)
to store tags/categories ( eg: [ name: "Sport", parent: "Hobby", page: "/sport"
] )
to store simple multiple values (for eg. in User collection: list of specialties, list of personal websites)
Don't use them when:
the parent Document will grow too large
when you need to paginate them
when you feel the entity is important enough to deserve his own collection
Duplicate values across collection and precompute counts:
Duplicate some columns/attributes values from a Collection to another if you need to do a query with each values in the where conditions. (remember there aren't joins)
eg: In the Ticket collection put also the author name (not only the ID)
Also if you need a counter (number of tickets opened by user, by category, ecc), precompute them.
Embed references:
When you have a One-to-Many or Many-to-Many reference, use an embedded array with the list of the referenced document ids (see MongoDB DB Ref).
You'll need to use an Event again to remove an id if the referenced document get deleted.
(There is an extension for Doctrine ODM if you use it: Reference Integrity)
This kind of references are directly managed by Doctrine ODM: Reference Many
Its easy to fix errors:
If you find late that you have made a mistake in the schema design, its quite simply to fix it with few lines of Javascript to run directly in the Mongo console.
(stored procedures made easy: no need of complex migration scripts)
Waring: don't use Doctrine ODM Migrations, you'll regret that later.

Redid this answer since the original answer took the relation the wrong way round due to reading incorrectly.
issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}}
As to whether embedding some important information about the user (creator) of the ticket is a wise decision or not depends upon the system specifics.
Are you giving these users the ability to login and report issues they find? If so then it is likely you might want to factor that relation off to a user collection.
On the other hand, if that is not the case then you could easily get away with this schema. The one problem I see here is if you wish to contact the reporter and their job role has changed, that's somewhat awkward; however, that is a real world dilemma, not one for the database.
Since the subdocument represents a single one-to-one relation to a reporter you also should not suffer fragmentation problems mentioned in my original answer.
There is one glaring problem with this schema and that is duplication of changing repeating data (Normalised Form stuff).
Let's take an example. Imagine you hit the real world dilemma I spoke about earlier and a user called Nigel wants his role to reflect his new job position from now on. This means you have to update all rows where Nigel is the reporter and change his role to that new position. This can be a lengthy and resource consuming query for MongoDB.
To contradict myself again, if you were to only have maybe 100 tickets (aka something manageable) per user then the update operation would likely not be too bad and would, in fact, by manageable for the database quite easily; plus due to the lack of movement (hopefully) of the documents this would be a completely in place update.
So whether this should be embedded or not depends heavily upn your querying and documents etc, however, I would say this schema isn't a good idea; specifically due to the duplication of changing data across many root documents. Technically, yes, you could get away with it but I would not try.
I would instead split the two out.
If I have objects (subdocuments) in a document, can I update them all in a single query?
Just like the relation style in my original answer, yes and easily.
For example, let's update the role of Nigel to MD (as hinted earlier) and change the ticket status to completed:
db.tickets.update({'reporter.username':'Nigel'},{$set:{'reporter.role':'MD', status: 'completed'}})
So a single document schema does make CRUD easier in this case.
One thing to note, stemming from your English, you cannot use the positional operator to update all subdocuments under a root document. Instead it will update only the first found.
Again hopefully that makes sense and I haven't left anything out. HTH
Original Answer
here I have a user related to the issue). Should I create another document 'user' and reference it in 'issue' document by its id (like in relational databases), or should I leave all the user's data in the subdocument?
This is a considerable question and requires some background knowledge before continuing.
First thing to consider is the size of a issue:
issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}}
Is not very big, and since you no longer need the reporter information (that would be on the root document) it could be smaller, however, issues are never that simple. If you take a look at the MongoDB JIRA for example: https://jira.mongodb.org/browse/SERVER-9548 (as a random page that proves my point) the contents of a "ticket" can actually be quite considerable.
The only way you would gain a true benefit from embedding the tickets would be if you could store ALL user information in a single 16 MB block of contigious sotrage which is the maximum size of a BSON document (as imposed by the mongod currently).
I don't think you would be able to store all tickets under a single user.
Even if you was to shrink the ticket to, maybe, a code, title and a description you could still suffer from the "swiss cheese" problem caused by regular updates and changes to documents in MongoDB, as ever this: http://www.10gen.com/presentations/storage-engine-internals is a good reference for what I mean.
You would typically witness this problem as users add multiple tickets to their root user document. The tickets themselves will change as well but maybe not in a drastic or frequent manner.
You can, of course, remedy this problem a bit by using power of 2 sizes allocation: http://docs.mongodb.org/manual/reference/command/collMod/#usePowerOf2Sizes which will do exactly what it says on the tin.
Ok, hypothetically, if you were to only have code and title then yes, you could store the tickets as subdocuments in the root user without too many problems, however, this is something that comes down to specifics that the bounty assignee has not mentioned.
If I have objects (subdocuments) in a document, can I update them all in a single query?
Yes, quite easily. This is one thing that becomes easier with embedding. You could use a query like:
db.users.update({user_id:uid,'tickets.code':'asdf-1'}, {$set:{'tickets.$.title':'Oh NOES'}})
However, to note, you can only update ONE subdocument at a time using the positional operator. As such this means you cannot, in a single atomic operation, update all ticket dates on a single user to 5 days in the future.
As for adding a new ticket, that is quite simple:
db.users.update({user_id:uid},{$push:{tickets:{code:asdf-1,title:"Whoop"}}})
So yes, you can quite simply, depending on your queries, update the entire users data in a single call.
That was quite a long answer so hopefully I haven't missed anything out, hope it helps.

I like MongoDB, but I have to say that I will use it a lot more soberly in my next project.
Specifically, I have not had as much luck with the Embedded Document facility as people promise.
Embedded Document seems to be useful for Composition (see UML Composition), but not for aggregation. Leaf nodes are great, anything in the middle of your object graph should not be an embedded document. It will make searching and validating your data more of a struggle than you'd want.
One thing that is absolutely better in MongoDB is your many-to-X relationships. You can do a many-to-many with only two tables, and it's possible to represent a many-to-one relationship on either table. That is, you can either put 1 key in N rows, or N keys in 1 row, or both. Notably, queries to accomplish set operations (intersection, union, disjoint set, etc) are actually comprehensible by your coworkers. I have never been satisfied with these queries in SQL. I often have to settle for "two other people will understand this".
If you've ever had your data get really big, you know that inserts and updates can be constrained by how much the indexes cost. You need fewer indexes in MongoDB; an index on A-B-C can be used to query for A, A & B, or A & B & C (but not B, C, B & C or A & C). Plus the ability to invert a relationship lets you move some indexes to secondary tables. My data hasn't gotten big enough to try, but I'm hoping that will help.

Related

MongoDB and one-to-many relation

I am trying to come up with a rough design for an application we're working on. What I'd like to know is, if there is a way to directly map a one to many relation in mongo.
My schema is like this:
There are a bunch of Devices.
Each device is known by it's name/ID uniquely.
Each device, can have multiple interfaces.
These interfaces can be added by a user in the front end at any given
time.
An interface is known uniquely by it's ID, and can be associated with
only one Device.
A device can contain at least an order of 100 interfaces.
I was going through MongoDB documentation wherein they mention things relating to Embedded document vs. multiple collections. By no means am I having a detailed clarity over this as I've just started with Mongo and meteor.
Question is, what could seemingly be a better approach? Having multiple small collections or having one big embedded collection. I know this question is somewhat subjective, I just need some clarity from folks who have more expertise in this field.
Another question is, suppose I go with the embedded model, is there a way to update only a part of the document (specific to the interface alone) so that as and when itf is added, it can be inserted into the same device document?
It depends on the purpose of the application.
Big document
A good example on where you'd want a big embedded collection would be if you are not going to modify (normally) the data but you're going to query them a lot. In my application I use this for storing pre-processed trips with all the information. Therefore when someone wants to consult this trip, all the information is located in a single document. However if your query is based on a value that is embedded in a trip, inside a list this would be very slow. If that's the case I'd recommend creating another collection with a relation between both collections. Also for updating part of a document it would be slow since it would require you to fetch the whole document and then update it.
Small documents with relations
If you plan on modify the data a lot, I'd recommend you to stick to a reference to another collection. With small documents, this will allow you to update any collection quicker. If you want to model a unique relation you may consider using a unique index in mongo. This can be done using: db.members.createIndex( { "user_id": 1 }, { unique: true } ).
Therefore:
Big object: Great for querying data but slow for complex queries.
Small related collections: Great for updating but requires several queries on distinct collections.

MongoDB - One Collection Using Indexes

Ok so the more and more I develop in Mongodb i start to wonder about the need for multiple collections vs having one large collection with indexes (since columns and fields can be different for each document unlike tabular data). If i am trying to develop in the most efficient way possible (meaning less code and reusable code) then can I use one collection for all documents and just index on a field. By having all documents in one collection with indexes then i can reuse all my form processing code and other code since it will all be inserting into the same collection.
For Example:
Lets say i am developing a contact manager and I have two types of contacts "individuals" and "businesses". My original thought was to create a collection called individuals and a second collection called businesses. But that was because im used to developing in sql where yes this would be appropriate since columns would be different for each table. The more i started to think about the flexibility of document dbs the more I started to think, "do I really need two collections for this?" If i just add a field to each document called "contact type" and index on that, do i really need two collections? Since the fields/columns in each document do not have to be the same for all (like in sql) then each document can have their own fields as long as i have a "document type" field and an index on that field.
So then i took that concept and started to think, if i only need one collection for "individuals" and "businesses" then do i even need a separate collection for "Users" or "Contact History" or any other data. In theory couldn't i build the entire solution in once collection and just have a field in each document that specifield the "type" and index on it such as "Users", "Individual Contact", "Business Contacts", "Contact History", etc, and if it is a document related to another document i can index on the "parent key/foreign" Id field...
This would allow me to code the front end dynamically since the form processing code would all be the same (inserting into the same collection). This would save a lot of coding but i want to make sure by using indexes and secondary indexes that the db would still run fast and not cause future problems as the collection grew. As you can imagine, if everything was in one collection there might be hundreds of thousands even millions of documents in this collection as the user base grows but it would have indexes and secondary indexes to optimize performance.
My question is: Is this a common method mongodb developers use? Why or why not? What are the downfalls, if any? If this is a commonly used method, please also give any positives to using this method. thank you.
This is a really big point in Mongo and the answer is a little bit more of an art than science. Having one collection full of gigantic documents is definitely an anti-pattern because it works against many of Mongo's features.
For instance, when retrieving documents, you can only retrieve a whole document out of a collection (not entirely true, but mostly). So if you have huge documents, you're retrieving huge documents each time. Also, having huge documents makes sharding less flexible since only the top level documents are indexed (and hence, sharded) in each collection. You can index values deep into a document, but the index value is associated with the top level document.
At the same time, going purely relational is also an anti-pattern because you've lost a lot of the referential integrity by going to Mongo in the first place. Also, all joins are done in application memory, so each one requires a full round-trip (slow).
So the answer is to do something in between. I'm thinking you'll probably want a collection for individuals and a different collection for businesses in this case. I say this because it seem like businesses have enough meta-data associated that it could bulk up a lot. (Also, I individual-business relationship seems like a many-to-many). However, an individual might have a Name object (with first and last properties). That would be a bad idea to make Name into a separate collection.
Some info from 10gen about schema design: http://www.mongodb.org/display/DOCS/Schema+Design
EDIT
Also, Mongo has limited support for transactions - in the form of atomic aggregates. When you insert an object into mongo, the entire object is either inserted or not inserted. So you're application domain requires consistency between certain objects, you probably want to keep them in the same document/collection.
For example, consider an application that requires that a User always has a Name object (containing FirstName, LastName, and MiddleInitial). If a User was somehow inserted with no corresponding Name, the data would be considered to be corrupted. In an RDBMS you would wrap a transaction around the operations to insert User and Name. In Mongo, we make sure Name is in the same document (aggregate) as User to achieve the same effect.
Your example is a little less clear, since I don't understand the business cases. One thing that does come to mind is that Mongo has excellent support for inheritance. It might make sense to put all users, individuals, and potentially businesses into the same collection (depending on how the application is modeled). If one individual has many contacts, you probably want individuals to have an array of IDs. If your application requires that you get a quick preview of contacts, you might consider duplicating part of an individual and storing an array of contact objects.
If you're used to RDBMS thinking, you probably think all your data always has to be consistent. The truth is, that's probably not entirely true. This concept of applying atomic aggregates to the domain has been preached heavily by the DDD community recently. When you look at your domain in depth, like your business users do, the consistency boundaries should become distinct.
MongoDB, and NoSQL in general, is about de-normalising data and about reducing joins. It goes against normal SQL thinking.
In your case, I don't see any reason why you would want to have separate collections because it introduces unnecessary complexity and performance overhead. Consider, for example, if you wanted to have a screen that displayed all contacts, in alphabetical order. If you have one single collection for contacts, then its really easy, but if you have two collections it becomes a more complicated proposition.
Where I would have multiple collections is if your application had multiple users storing contacts. I would then have one collection for each user. This makes it so easy to extract out that users contacts.

MongoDB - Denormalization / model opinion

I've been getting in to mongo, but coming from RDBMS background facing the probably obvious questions with regards to denormalisation and general data modelling.
If I have a document type with an array of sub docs, each sub doc has a status code.
In The relational world I would add a foreign key to the record, StatusId, simple.
In mongodb, would you denormalise the key pieces of data from the "status" e.g. Code and desc and hold objectid referencing another collection of proper status. I guess the next question is one of design, if the status doc is modified I'd then need to modified the denormalised data?
Another question on the same theme is how would you model a transaction table, say I have events and people, the events could be quite granular, say time sheets which over time may lead to many records. Based on what I've seen, this would seem like a good candidate for a child / sub array of docs, of course that could be indexed for speed.
Therefore is it possible to query / find just the sub array or part of it? And given the 16mb limit for doc size, and I just limited the transaction history of the person? Or should the transaction history be a separate collection with a onjid referencing the person?
Thanks for any input
Sam
Or should the transaction history be a separate collection with a onjid referencing the person?
Probably, I think this S/O question may help you understand why.
if the status doc is modified I'd then need to modified the denormalised data?
Yes this is standard trade-off in MongoDB. You will encounter this question a lot. You may need to leverage a Queue structure to ensure that data remains consistent across multiple collections.
Therefore is it possible to query / find just the sub array or part of it?
This is a tough one specific to MongoDB. With the basic query syntax, you have only limited support for dealing with arrays of objects. The new "Aggregration Framework" is actually much better here, but it's not available in a stable build.
All your "how to model this or that" can't really be answered, because good schema design depends on so many factors (access patters, hardware characteristics, is cluster used, etc).
if the status doc is modified I'd then need to modified the denormalised data?
Usually yes, that's the drawback of denormalisation. But sometimes you don't have to (some social network site stores user name with a photo tag and doesn't update it when user changes his name).
to query / find just the sub array or part of it?
It is not currently possible to fetch only a part of array (unless using map/reduce, of course).
And given the 4mb limit
Where did you get this from? It's 16mb at the moment.
While it's true that schema design does take into account many factors, the need to denormalize data usually comes up somewhere. I tend to take advantage of denormalization in my apps that use MongoDB because I feel it lends itself well storing denormalized data:
no additional column maintenance
support for hashes and arrays as field types (perfect for storing denormalized fields)
speedy, non-blocking writes make syncing data less expensive
document size growth only marginally affects performance up to limits (for the most part)
There are a few gems that help you manage denormalized data, including setting it up and keeping it in sync. If you're using Mongoid, you try mongoid_alize. DISCLAIMER: I am the author and maintainer of mongoid_alize.

MongoDB normalization, foreign key and joining

Before I dive really deep into MongoDB for days, I thought I'd ask a pretty basic question as to whether I should dive into it at all or not. I have basically no experience with nosql.
I did read a little about some of the benefits of document databases, and I think for this new application, they will be really great. It is always a hassle to do favourites, comments, etc. for many types of objects (lots of m-to-m relationships) and subclasses - it's kind of a pain to deal with.
I also have a structure that will be a pain to define in SQL because it's extremely nested and translates to a document a lot better than 15 different tables.
But I am confused about a few things.
Is it desirable to keep your database normalized still? I really don't want to be updating multiple records. Is that still how people approach the design of the database in MongoDB?
What happens when a user favourites a book and this selection is still stored in a user document, but then the book is deleted? How does the relationship get detached without foreign keys? Am I manually responsible for deleting all of the links myself?
What happens if a user favourited a book that no longer exists and I query it (some kind of join)? Do I have to do any fault-tolerance here?
MongoDB doesn't support server side foreign key relationships, normalization is also discouraged. You should embed your child object within parent objects if possible, this will increase performance and make foreign keys totally unnecessary. That said it is not always possible, so there is a special construct called DBRef which allows to reference objects in a different collection. This may be then not so speedy because DB has to make additional queries to read objects but allows for kind of foreign key reference.
Still you will have to handle your references manually. Only while looking up your DBRef you will see if it exists, the DB will not go through all the documents to look for the references and remove them if the target of the reference doesn't exist any more. But I think removing all the references after deleting the book would require a single query per collection, no more, so not that difficult really.
If your schema is more complex then probably you should choose a relational database and not nosql.
There is also a book about designing MongoDB databases: Document Design for MongoDB
UPDATE The book above is not available anymore, yet because of popularity of MongoDB there are quite a lot of others. I won't link them all, since such links are likely to change, a simple search on Amazon shows multiple pages so it shouldn't be a problem to find some.
See the MongoDB manual page for 'Manual references' and DBRefs for further specifics and examples
Above, #TomaaszStanczak states
MongoDB doesn't support server side foreign key relationships,
normalization is also discouraged. You should embed your child object
within parent objects if possible, this will increase performance and
make foreign keys totally unnecessary. That said it is not always
possible ...
Normalization is not discouraged by Mongo. To be clear, we are talking about two fundamentally different types of relationships two data entities can have. In one, one child entity is owned exclusively by a parent object. In this type of relationship the Mongo way is to embed.
In the other class of relationship two entities exist independently - have independent lifetimes and relationships. Mongo wishes that this type of relationship did not exist, and is frustratingly silent on precisely how to deal with it. Embedding is just not a solution. Normalization is not discouraged, or encouraged. Mongo just gives you two mechanisms to deal with it; Manual refs (analoguous to a key with the foreign key constraint binding two tables), and DBRef (a different, slightly more structured way of doing the same). In this use case SQL databases win.
The answers of both Tomasz and Francis contain good advice: that "normalization" is not discouraged by Mongo, but that you should first consider optimizing your database document design before creating "document references". DBRefs were mentioned by Tomasz, however as he alluded, are not a "magic bullet" and require additional processing to be useful.
What is now possible, as of MongoDB version 3.2, is to produce results equivalent to an SQL JOIN by using the $lookup aggregation pipeline stage operator. In this manner you can have a "normalized" document structure, but still be able to produce consolidated results. In order for this to work you need to create a unique key in the target collection that is hopefully both meaningful and unique. You can enforce uniqueness by creating a unique index on this field.
$lookup usage is pretty straightforward. Have a look at the documentation here: https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#lookup-aggregation. Run the aggregate() method on the source collection (i.e. the "left" table). The from parameter is the target collection (i.e. the "right" table). The localField parameter would be the field in the source collection (i.e. the "foreign key"). The foreignField parameter would be the matching field in the target collection.
As far as orphaned documents, from your question I would presume you are thinking about a traditional RDBMS set of constraints, cascading deletes, etc. Again, as of MongoDB version 3.2, there is native support for document validation. Have a look at this StackOver article: How to apply constraints in MongoDB? Look at the second answer, from JohnnyHK
Packt Publishers have a bunch of good books on MongoDB. (Full Disclosure: I wrote a couple of them.)

Many to many update in MongoDB without transactions

I have two collections with a many-to-many relationship. I want to store an array of linked ObjectIds in both documents so that I can take Document A and retrieve all linked Document B's quickly, and vice versa.
Creating this link is a two step process
Add Document A's ObjectId to Document B
Add Document B's ObjectId to Document A
After watching a MongoDB video I found this to be the recommended way of storing a many-to-many relationship between two collections
I need to be sure that both updates are made. What is the recommended way of robustly dealing with this crucial two step process without a transaction?
I could condense this relationship into a single link collection, the advantage being a single update with no chance of Document B missing the link to Document A. The disadvantage being that I'm not really using MongoDB as intended. But, because there is only a single update, it seems more robust to have a link collection that defines the many-to-many relationship.
Should I use safe mode and manually check the data went in afterwards and try again on failure? Or should I represent the many-to-many relationship in just one of the collections and rely on an index to make sure I can still quickly get the linked documents?
Any recommendations? Thanks
#Gareth, you have multiple legitimate ways to do this. So they key concern is how you plan to query for the data, (i.e.: what queries need to be fast)
Here are a couple of methods.
Method #1: the "links" collection
You could build a collection that simply contains mappings between the collections.
Pros:
Supports atomic updates so that data is not lost
Cons:
Extra query when trying to move between collections
Method #2: store copies of smaller mappings in larger collection
For example: you have millions of Products, but only a hundred Categories. Then you would store the Categories as an array inside each Product.
Pros:
Smallest footprint
Only need one update
Cons:
Extra query if you go the "wrong way"
Method #3: store copies of all mappings in both collections
(what you're suggesting)
Pros:
Single query access to move between either collection
Cons:
Potentially large indexes
Needs transactions (?)
Let's talk about "needs transactions". There are several ways to do transactions and it really depends on what type of safety you require.
Should I use safe mode and manually check the data went in afterwards and try again on failure?
You can definitely do this. You'll have to ask yourself, what's the worst that happens if only one of the saves fails?
Method #4: queue the change
I don't know if you've ever worked with queues, but if you have some leeway you can build a simple queue and have different jobs that update their respective collections.
This is a much more advanced solution. I would tend to go with #2 or #3.
Why don't you create a dedicated collection holding the relations between A and B as dedicated rows/documents as one would do it in a RDBMS. You can modify the relation table with one operation which is of course atomic.
Should I use safe mode and manually check the data went in afterwards and try again on failure?
Yes this an approach, but there is an another - you can implement an optimistic transaction. It has some overhead and limitations but it guarantees data consistency. I wrote an example and some explanation on a GitHub page.