Is it possible to detect intersection of CGMutablePathRef and CGRect ? - iphone

I have a sprite with its bounding box and I want to detect the intersection of it with a CGMutablePathRef. How would I do that ?

There's no readily available solution for that. It also depends on what features of CGPath you are using. If it's just a series of points, you can use a regular line with rectangle intersection test.
Everything else (eg bezier curve and rectangle intersection) is going to be very complicated.

If it's a pure rectangular comparison, you can use CGPathGetBoundingBox to obtain the path's bounding box and then use CGRectIntersectsRect to determine if the intersection occurs.

Depending on performance needs, draw into a 1-bit deep bitmap, clipping to the CGRect. Then scan for a pixel. (This technique tends to be more appropriate for testing to a point.)

Related

Painting Polygon Shaped Areas on Terrain/Surface/Ground in Unity

I have a set of 2D polygon shapes, each one with a varying amount of points that are determined at runtime.
I need to draw (or "paint") these polygons on top of a surface.
I also need to fill in the areas of each polygon with a specific color that is also determined at runtime.
The polygons only really need to be drawn once, however solutions that would allow me to update/change the colors would be nice.The project will be built for WebGL.
The polygons are to mark of specific areas on a surface so they shouldn't repeat.
Polygons can overlap with eachother
What are the different/best solutions that may help me achieve this?
Am also open to suggestions and further reading
I'm a relative Beginner to Unity but a somewhat experienced programmer and know a slight bit about shader programming.
By polygons I don't mean geometry I just mean a regular shapes I would like to paint on to a surface. Its just that I will always have polygons with a varying amount of points that are loaded in at runtime.
First, u need to split the surface into that polygon then u need to have materials on them and the code that specifies the colour should update the colour of the material which is on that specific polygon. Creating materials could be done in code to avoid a lot of work in a simple loop.

Open GL - ES 2.0 : Touch detection

Hi Guys I am doing some work on iOS and the work requires use of OpenGL es. So now I have a bunch of squares, cubes and triangles on the screen. Some of these geometries might overlap. Any ideas/ approaches for touch detection?
Regards
To follow up on the answer already given, squares, cubes and triangles are convex shapes so you can perform ray-object intersection quite easily, even directly from the geometry rather than from the mathematical description of the perfect object.
You're going to need to be able to calculate the distance of a point from the plane and the intersection of a ray with the plane. As a simple test you can implement yourself very quickly, for each polygon on the convex shape work out the intersection between the ray and the plane. Then check whether that point is behind all the planes defined by polygons that share an edge with the one you just tested. If so then the hit is on the surface of the object — though you should be careful about coplanar adjoining polygons and rounding errors.
Once you've found a collision you can easily get the length of the ray to the point of collision. The object with the shortest distance is the one that's in front.
If that's fast enough then great, otherwise you'll probably want to look into partitioning the world or breaking objects down to their silhouettes. Convex objects are really simple — consider all the edges that run between one polygon and the next. If only exactly one of those polygons is front facing then the edge is part of the silhouette. All the silhouettes edges together can be projected to a convex 2d shape on the view plane. You can then test touches by performing a 2d point-in-polygon from that.
A further common alternative that eliminates most of the maths is picking. You'd render the scene to an invisible buffer with each object appearing as a solid blob in a suitably unique colour. To test for touch, you'd just do a glReadPixels and inspect the colour.
For the purposes of glu on the iPhone, you can grab SGI's implementation (as used by MESA). I've used its tessellator in a shipping, production project before.
I had that problem in the past. What I have used is an implementation of glu unproject that you can find on google (it uses the inverse of the model view projection matrix and the viewport size). This allows you to map the 2D screen coordinates to a 3D vector into the world. Then, you can use this vector to intersect with your objects and see which one intersects (or comes really close to doing so).
I do hope there are better ways of doing this, so I look forward to other answers as well!
Once you get the inverse-modelview and cast your ray (vector), you still need to know if the ray intersects your geometry. One approach would be to grab the depth (z in view coordinate system) of the object's center and extend (stretch) your vector just that far. Then see if the vector's "head" ends within the volume of your object or not (you need the objects center and e.g. Its radius, if it's a sphere)

Is there a way to figure out 3D distance/view angle from a 2D environment using the iPhone/iPad camera?

Maybe I'm asking this too soon in my research, but I'd better know if this is possible sooner than later.
Imagine I have the following square printed on a paper on top of a table:
The table is brown, so it does not match with any of the colors in the square. Is there a way for me, from a common iPhone camera (non-stereo view), to figure out the distance and angle from which Im looking at the square in the table?
In the end what I'm looking for is being able to draw a 3D square on top of this one using the camera image, but I'm not sure if I am going to be able to figure out the distance and position of the object in space using only a 2D image. Any hints are well appreciated.
Short answer: http://weblog.bocoup.com/javascript-augmented-reality
Big answer:
First posterize, Then vectorize, With the vectors in your power you may need to do some math tricks to define, based on the vectors position, the perspective and then the camera position.
Maybe this help:
www.pixastic.com/lib/docs/actions/posterize/
github.com/selead/cl-vectorizer
vectormagic.com/home
autotrace.sourceforge.net
www.scipy.org/PyLab
raphaeljs.com/
technabob.com/blog/2007/12/29/video-games-get-vectorized/
superuser.com/questions/88415/is-there-an-open-source-alternative-to-vector-magic
Oughta be possible. Scan the image for the red/blue/yellow pattern, then do edge detection to figure out how warped the squares are (they'll be parallelograms in anything but straight-on view). Distance would depend on the camera's zoom setting and scan resolution. But basically you'd count how many pixels are visible in each of the squares, run that past the camera's specs and you should be able to determine a rough distance.

How to clip or subtract a CGMutablePathRf by another CGMutalbePathRef?

I have a rectangular CGMutablePathRef and I want to subtract a circle which lays exactly on centered on one edge of that rectangle, so the edge does not cross the circle anymore.
There seem to be no functions to intersect or subtract paths from another. How can I do it?
You need to look at the CGContext you are drawing into and use the clipping on the context rather than the path.
Apple's documentation is here.
If I understand your question, you can draw your rectangle into the context and then "clip out" the circle path. If you are filling the paths, you'll need to pay attention to the winding rules.
Alternatively, you can make your path with a series of commands such as CGPathAddLineToPoint, CGPathAddArcToPoint, etc and then stoke the path in your context. If you use this approach, you can then apply transforms to the final path for scaling and rotating as needed. Depending on what you are trying to accomplish, this may be the better approach.

Screen-to-World coordinate conversion in OpenGLES an easy task?

The Screen-to-world problem on the iPhone
I have a 3D model (CUBE) rendered in an EAGLView and I want to be able to detect when I am touching the center of a given face (From any orientation angle) of the cube. Sounds pretty easy but it is not...
The problem:
How do I accurately relate screen-coordinates (touch point) to world-coordinates (a location in OpenGL 3D space)? Sure, converting a given point into a 'percentage' of the screen/world-axis might seem the logical fix, but problems would arise when I need to zoom or rotate the 3D space. Note: rotating & zooming in and out of the 3D space will change the relationship of the 2D screen coords with the 3D world coords...Also, you'd have to allow for 'distance' in between the viewpoint and objects in 3D space. At first, this might seem like an 'easy task', but that changes when you actually examine the requirements. And I've found no examples of people doing this on the iPhone. How is this normally done?
An 'easy' task?:
Sure, one might undertake the task of writing an API to act as a go-between between screen and world, but the task of creating such a framework would require some serious design and would likely take 'time' to do -- NOT something that can be one-manned in 4 hours...And 4 hours happens to be my deadline.
The question:
What are some of the simplest ways to
know if I touched specific locations
in 3D space in the iPhone OpenGL ES
world?
You can now find gluUnProject in http://code.google.com/p/iphone-glu/. I've no association with the iphone-glu project and haven't tried it yet myself, just wanted to share the link.
How would you use such a function? This PDF mentions that:
The Utility Library routine gluUnProject() performs this reversal of the transformations. Given the three-dimensional window coordinates for a location and all the transformations that affected them, gluUnProject() returns the world coordinates from where it originated.
int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz,
const GLdouble modelMatrix[16], const GLdouble projMatrix[16],
const GLint viewport[4], GLdouble *objx, GLdouble *objy, GLdouble *objz);
Map the specified window coordinates (winx, winy, winz) into object coordinates, using transformations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix), and viewport (viewport). The resulting object coordinates are returned in objx, objy, and objz. The function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure (such as an noninvertible matrix). This operation does not attempt to clip the coordinates to the viewport or eliminate depth values that fall outside of glDepthRange().
There are inherent difficulties in trying to reverse the transformation process. A two-dimensional screen location could have originated from anywhere on an entire line in three-dimensional space. To disambiguate the result, gluUnProject() requires that a window depth coordinate (winz) be provided and that winz be specified in terms of glDepthRange(). For the default values of glDepthRange(), winz at 0.0 will request the world coordinates of the transformed point at the near clipping plane, while winz at 1.0 will request the point at the far clipping plane.
Example 3-8 (again, see the PDF) demonstrates gluUnProject() by reading the mouse position and determining the three-dimensional points at the near and far clipping planes from which it was transformed. The computed world coordinates are printed to standard output, but the rendered window itself is just black.
In terms of performance, I found this quickly via Google as an example of what you might not want to do using gluUnProject, with a link to what might lead to a better alternative. I have absolutely no idea how applicable it is to the iPhone, as I'm still a newb with OpenGL ES. Ask me again in a month. ;-)
You need to have the opengl projection and modelview matrices. Multiply them to gain the modelview projection matrix. Invert this matrix to get a matrix that transforms clip space coordinates into world coordinates. Transform your touch point so it corresponds to clip coordinates: the center of the screen should be zero, while the edges should be +1/-1 for X and Y respectively.
construct two points, one at (0,0,0) and one at (touch_x,touch_y,-1) and transform both by the inverse modelview projection matrix.
Do the inverse of a perspective divide.
You should get two points describing a line from the center of the camera into "the far distance" (the farplane).
Do picking based on simplified bounding boxes of your models. You should be able to find ray/box intersection algorithms aplenty on the web.
Another solution is to paint each of the models in a slightly different color into an offscreen buffer and reading the color at the touch point from there, telling you which brich was touched.
Here's source for a cursor I wrote for a little project using bullet physics:
float x=((float)mpos.x/screensize.x)*2.0f -1.0f;
float y=((float)mpos.y/screensize.y)*-2.0f +1.0f;
p2=renderer->camera.unProject(vec4(x,y,1.0f,1));
p2/=p2.w;
vec4 pos=activecam.GetView().col_t;
p1=pos+(((vec3)p2 - (vec3)pos) / 2048.0f * 0.1f);
p1.w=1.0f;
btCollisionWorld::ClosestRayResultCallback rayCallback(btVector3(p1.x,p1.y,p1.z),btVector3(p2.x,p2.y,p2.z));
game.dynamicsWorld->rayTest(btVector3(p1.x,p1.y,p1.z),btVector3(p2.x,p2.y,p2.z), rayCallback);
if (rayCallback.hasHit())
{
btRigidBody* body = btRigidBody::upcast(rayCallback.m_collisionObject);
if(body==game.worldBody)
{
renderer->setHighlight(0);
}
else if (body)
{
Entity* ent=(Entity*)body->getUserPointer();
if(ent)
{
renderer->setHighlight(dynamic_cast<ModelEntity*>(ent));
//cerr<<"hit ";
//cerr<<ent->getName()<<endl;
}
}
}
Imagine a line that extends from the viewer's eye
through the screen touch point into your 3D model space.
If that line intersects any of the cube's faces, then the user has touched the cube.
Two solutions present themselves. Both of them should achieve the end goal, albeit by a different means: rather than answering "what world coordinate is under the mouse?", they answer the question "what object is rendered under the mouse?".
One is to draw a simplified version of your model to an off-screen buffer, rendering the center of each face using a distinct color (and adjusting the lighting so color is preserved identically). You can then detect those colors in the buffer (e.g. pixmap), and map mouse locations to them.
The other is to use OpenGL picking. There's a decent-looking tutorial here. The basic idea is to put OpenGL in select mode, restrict the viewport to a small (perhaps 3x3 or 5x5) window around the point of interest, and then render the scene (or a simplified version of it) using OpenGL "names" (integer identifiers) to identify the components making up each face. At the end of this process, OpenGL can give you a list of the names that were rendered in the selection viewport. Mapping these identifiers back to original objects will let you determine what object is under the mouse cursor.
Google for opengl screen to world (for example there’s a thread where somebody wants to do exactly what you are looking for on GameDev.net). There is a gluUnProject function that does precisely this, but it’s not available on iPhone, so that you have to port it (see this source from the Mesa project). Or maybe there’s already some publicly available source somewhere?