Screen-to-World coordinate conversion in OpenGLES an easy task? - iphone

The Screen-to-world problem on the iPhone
I have a 3D model (CUBE) rendered in an EAGLView and I want to be able to detect when I am touching the center of a given face (From any orientation angle) of the cube. Sounds pretty easy but it is not...
The problem:
How do I accurately relate screen-coordinates (touch point) to world-coordinates (a location in OpenGL 3D space)? Sure, converting a given point into a 'percentage' of the screen/world-axis might seem the logical fix, but problems would arise when I need to zoom or rotate the 3D space. Note: rotating & zooming in and out of the 3D space will change the relationship of the 2D screen coords with the 3D world coords...Also, you'd have to allow for 'distance' in between the viewpoint and objects in 3D space. At first, this might seem like an 'easy task', but that changes when you actually examine the requirements. And I've found no examples of people doing this on the iPhone. How is this normally done?
An 'easy' task?:
Sure, one might undertake the task of writing an API to act as a go-between between screen and world, but the task of creating such a framework would require some serious design and would likely take 'time' to do -- NOT something that can be one-manned in 4 hours...And 4 hours happens to be my deadline.
The question:
What are some of the simplest ways to
know if I touched specific locations
in 3D space in the iPhone OpenGL ES
world?

You can now find gluUnProject in http://code.google.com/p/iphone-glu/. I've no association with the iphone-glu project and haven't tried it yet myself, just wanted to share the link.
How would you use such a function? This PDF mentions that:
The Utility Library routine gluUnProject() performs this reversal of the transformations. Given the three-dimensional window coordinates for a location and all the transformations that affected them, gluUnProject() returns the world coordinates from where it originated.
int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz,
const GLdouble modelMatrix[16], const GLdouble projMatrix[16],
const GLint viewport[4], GLdouble *objx, GLdouble *objy, GLdouble *objz);
Map the specified window coordinates (winx, winy, winz) into object coordinates, using transformations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix), and viewport (viewport). The resulting object coordinates are returned in objx, objy, and objz. The function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure (such as an noninvertible matrix). This operation does not attempt to clip the coordinates to the viewport or eliminate depth values that fall outside of glDepthRange().
There are inherent difficulties in trying to reverse the transformation process. A two-dimensional screen location could have originated from anywhere on an entire line in three-dimensional space. To disambiguate the result, gluUnProject() requires that a window depth coordinate (winz) be provided and that winz be specified in terms of glDepthRange(). For the default values of glDepthRange(), winz at 0.0 will request the world coordinates of the transformed point at the near clipping plane, while winz at 1.0 will request the point at the far clipping plane.
Example 3-8 (again, see the PDF) demonstrates gluUnProject() by reading the mouse position and determining the three-dimensional points at the near and far clipping planes from which it was transformed. The computed world coordinates are printed to standard output, but the rendered window itself is just black.
In terms of performance, I found this quickly via Google as an example of what you might not want to do using gluUnProject, with a link to what might lead to a better alternative. I have absolutely no idea how applicable it is to the iPhone, as I'm still a newb with OpenGL ES. Ask me again in a month. ;-)

You need to have the opengl projection and modelview matrices. Multiply them to gain the modelview projection matrix. Invert this matrix to get a matrix that transforms clip space coordinates into world coordinates. Transform your touch point so it corresponds to clip coordinates: the center of the screen should be zero, while the edges should be +1/-1 for X and Y respectively.
construct two points, one at (0,0,0) and one at (touch_x,touch_y,-1) and transform both by the inverse modelview projection matrix.
Do the inverse of a perspective divide.
You should get two points describing a line from the center of the camera into "the far distance" (the farplane).
Do picking based on simplified bounding boxes of your models. You should be able to find ray/box intersection algorithms aplenty on the web.
Another solution is to paint each of the models in a slightly different color into an offscreen buffer and reading the color at the touch point from there, telling you which brich was touched.
Here's source for a cursor I wrote for a little project using bullet physics:
float x=((float)mpos.x/screensize.x)*2.0f -1.0f;
float y=((float)mpos.y/screensize.y)*-2.0f +1.0f;
p2=renderer->camera.unProject(vec4(x,y,1.0f,1));
p2/=p2.w;
vec4 pos=activecam.GetView().col_t;
p1=pos+(((vec3)p2 - (vec3)pos) / 2048.0f * 0.1f);
p1.w=1.0f;
btCollisionWorld::ClosestRayResultCallback rayCallback(btVector3(p1.x,p1.y,p1.z),btVector3(p2.x,p2.y,p2.z));
game.dynamicsWorld->rayTest(btVector3(p1.x,p1.y,p1.z),btVector3(p2.x,p2.y,p2.z), rayCallback);
if (rayCallback.hasHit())
{
btRigidBody* body = btRigidBody::upcast(rayCallback.m_collisionObject);
if(body==game.worldBody)
{
renderer->setHighlight(0);
}
else if (body)
{
Entity* ent=(Entity*)body->getUserPointer();
if(ent)
{
renderer->setHighlight(dynamic_cast<ModelEntity*>(ent));
//cerr<<"hit ";
//cerr<<ent->getName()<<endl;
}
}
}

Imagine a line that extends from the viewer's eye
through the screen touch point into your 3D model space.
If that line intersects any of the cube's faces, then the user has touched the cube.

Two solutions present themselves. Both of them should achieve the end goal, albeit by a different means: rather than answering "what world coordinate is under the mouse?", they answer the question "what object is rendered under the mouse?".
One is to draw a simplified version of your model to an off-screen buffer, rendering the center of each face using a distinct color (and adjusting the lighting so color is preserved identically). You can then detect those colors in the buffer (e.g. pixmap), and map mouse locations to them.
The other is to use OpenGL picking. There's a decent-looking tutorial here. The basic idea is to put OpenGL in select mode, restrict the viewport to a small (perhaps 3x3 or 5x5) window around the point of interest, and then render the scene (or a simplified version of it) using OpenGL "names" (integer identifiers) to identify the components making up each face. At the end of this process, OpenGL can give you a list of the names that were rendered in the selection viewport. Mapping these identifiers back to original objects will let you determine what object is under the mouse cursor.

Google for opengl screen to world (for example there’s a thread where somebody wants to do exactly what you are looking for on GameDev.net). There is a gluUnProject function that does precisely this, but it’s not available on iPhone, so that you have to port it (see this source from the Mesa project). Or maybe there’s already some publicly available source somewhere?

Related

Why does merging geometries improve rendering speed?

In my web application I only need to add static objects to my scene. It worked slow so I started searching and I found that merging geometries and merging vertices were the solution. When I implemented it, it indeed worked a lot better. All the articles said that the reason for this improvement is the decrease in number of WebGL calls. As I am not very familiar with things like OpenGL and WebGL (I use Three.js to avoid their complexity), I would like to know why exactly it reduces the WebGL calls?
Because you send one large object instead of many littles, the overhead reduces. So I understand that loading one big mesh to the scene goes faster than many small meshes.
BUT I do not understand why merging geometries also has a positive influence on the rendering calculation? I would also like to know the difference between merging geometries and merging vertices?
Thanks in advance!
three.js is a framework that helps you work with the WebGL API.
What a "mesh" is to three.js, to webgl, it's a series of low level calls that set up state and issue calls to the GPU.
Let's take a sphere for example. With three.js you would create it with a few lines:
var sphereGeometry = new THREE.SphereGeometry(10);
var sphereMaterial = new THREE.MeshBasicMaterial({color:'red'});
var sphereMesh = new THREE.Mesh( sphereGeometry, sphereMaterial);
myScene.add( sphereMesh );
You have your renderer.render() call, and poof, a sphere appears on screen.
A lot of stuff happens under the hood though.
The first line, creates the sphere "geometry" - the cpu will a bunch of math and logic describing a sphere with points and triangles. Points are vectors, three floats grouped together, triangles are a structure that groups these points by indecis (groups of integers).
Somewhere there is a loop that calculates the vectors based on trigonometry (sin, cos), and another, that weaves the resulting array of vectors into triangles (take every N , N + M , N + 2M, create a triangle etc).
Now these numbers exist in javascript land, it's just a bunch of floats and ints, grouped together in a specific way to describe shapes such as cubes, spheres and aliens.
You need a way to draw this construct on a screen - a two dimensional array of pixels.
WebGL does not actually know much about 3D. It knows how to manage memory on the gpu, how to compute things in parallel (or gives you the tools), it does know how to do mathematical operations that are crucial for 3d graphics, but the same math can be used to mine bitcoins, without even drawing anything.
In order for WebGL to draw something on screen, it first needs the data put into appropriate buffers, it needs to have the shader programs, it needs to be setup for that specific call (is there going to be blending - transparency in three.js land, depth testing, stencil testing etc), then it needs to know what it's actually drawing (so you need to provide strides, sizes of attributes etc to let it know where a 'mesh' actually is in memory), how it's drawing it (triangle strips, fans, points...) and what to draw it with - which shaders will it apply on the data you provided.
So, you need a way to 'teach' WebGL to do 3d.
I think the best way to get familiar with this concept is to look at this tutorial , re-reading if necessary, because it explains what happens pretty much on every single 3d object in perspective, ever.
To sum up the tutorial:
a perspective camera is basically two 4x4 matrices - a perspective matrix, that puts things into perspective, and a view matrix, that moves the entire world into camera space. Every camera you make, consists of these two matrices.
Every object exists in it's object space. TRS matrix, (world matrix in three.js terms) is used to transform this object into world space.
So this stuff - a concept such as "projective matrix" is what teaches webgl how to draw perspective.
Three.js abstracts this further and gives you things like "field of view" and "aspect ratio" instead of left right, top bottom.
Three.js also abstracts the transformation matrices (view matrix on the camera, and world matrices on every object) because it allows you to set "position" and "rotation" and computes the matrix based on this under the hood.
Since every mesh has to be processed by the vertex shader and the pixel shader in order to appear on the screen, every mesh needs to have all this information available.
When a draw call is being issued for a specific mesh, that mesh will have the same perspective matrix, and view matrix as any other object being rendered with the same camera. They will each have their own world matrices - numbers that move them around around your scene.
This is transformation alone, happening in the vertex shader. These results are then rasterized, and go to the pixel shader for processing.
Lets consider two materials - black plastic and red plastic. They will have the same shader, perhaps one you wrote using THREE.ShaderMaterial, or maybe one from three's library. It's the same shader, but it has one uniform value exposed - color. This allows you to have many instances of a plastic material, green, blue, pink, but it means that each of these requires a separate draw call.
Webgl will have to issue specific calls to change that uniform from red to black, and then it's ready to draw stuff using that 'material'.
So now imagine a particle system, displaying a thousand cubes each with a unique color. You have to issue a thousand draw calls to draw them all, if you treat them as separate meshes and change colors via a uniform.
If on the other hand, you assign vertex colors to each cube, you don't rely on the uniform any more, but on an attribute. Now if you merge all the cubes together, you can issue a single draw call, processing all the cubes with the same shader.
You can see why this is more efficient simply by taking a glance at webglrenderer from three.js, and all the stuff it has to do in order to translate your 3d calls to webgl. Better done once than a thousand times.
Back to those 3 lines, the sphereMaterial can take a color argument, if you look at the source, this will translate to a uniform vec3 in the shader. However, you can also achieve the same thing by rendering the vertex colors, and assigning the color you want before hand.
sphereMesh will wrap that computed geometry into an object that three's webglrenderer understands, which in turn sets up webgl accordingly.

Shader-coding: nonlinear projection models

As I understand it, the standard projection model places an imaginary grid in front of the camera, and for each triangle in the scene, determines which 3 pixels its 3 corners project onto. The color is determined for each of these points, and the fragment shader fills in the rest using interpolation.
My question is this: is it possible to gain control over this projection model? For example, create my own custom distorted uv-grid? Or even just supply my own algorithm:
xyPixelPos_for_Vector3( Vector3 v ) {...}
I'm working in Unity3D, so I think that limits me to cG or openGL.
I did once write a GLES2 shader, but I don't remember ever performing any kind of "ray hits quad" type test to resolve the pixel position of a particular 3D point in space.
I'm going to assume that you want to render 3d images based upon 3d primitives that are defined by vertices. This is not the only way to render images with OpenGL but it is the most common. The technique that you describe sounds much more like Ray-Tracing.
How OpenGL Typically Works:
I wouldn't say that OpenGL creates an imaginary grid. Instead, what it does is take the positions of each of your vertices, and converts them into a different space using linear algebra (Matrices).
If you want to start playing around with this, it would be best to do some reading on Matrices, to understand what the graphics card is doing.
You can easily start warping the positions of Vertices by making a vertex shader. However, there is some setup involved. See the Lighthouse tutorials (http://www.lighthouse3d.com/tutorials/glsl-tutorial/hello-world-in-glsl/) to get started with that! You will also want to read their tutorials on lighting (http://www.lighthouse3d.com/tutorials/glsl-tutorial/lighting/), to create a fully functioning vertex shader which includes a lighting model.
Thankfully, once the shader is set up, you can distort your entire scene to your hearts content. Just remember to do your distortions in the right 'space'. World coordinates are much different than eye coordinates!

Alternative to default Open GLES lines (3D)?

I'm currently trying to implement a silhouette algorithm in my project (using Open GLES, it's for mobile devices, primarily iPhone at the moment). One of the requirements is that a set of 3D lines be drawn. The issue with the default OpenGL lines is that they don't connect at an angle nicely when they are thick (gaps appear). Other subtle artifacts are also evident, which detract from the visual appeal of the lines.
Now, I have looked into using some sort of quad strip as an alternative to this. However, drawing a quad strip in screen space requires some sort of visibility detection - lines obscured in the actual 3D world should not be visible.
There are numerous approaches to this problem - i.e. quantitative invisibility. But such an approach, particularly on a mobile device with limited processing power, is difficult to implement efficiently, considering raycasting needs to be employed. Looking around some more I found this paper, which describes a couple of methods for using z-buffer sampling to achieve such an effect. However, I'm not an expert in this area, and while I understand the theory behind the techniques to an extent, I'm not sure how to go about the practical implementation. I was wondering if someone could guide me here at a more technical level - on the OpenGLES side of things. I'm also open to any suggestions regarding 3D line visibility in general.
The technique with z-buffer will be too complex for iOS devices - it needs heavy pixel shader and (IMHO) it will bring some visual artifacts.
If your models are not complex you can find geometric silhouette in runtime - for example by comparing normals of polygons with common edge: if z value of direction in view space has different sings (one normal is directed to camera and other is from camera) then this edge should be used for silhouette.
Another approach is more "FPS friendly": keep extruded version of your model. And render firstly extruded model with color of silhouette (without textures and lighting) and normal model over it. You will need more memory for vertices, but no real-time computations.
PS: In all games I have look at silhouettes were geometric.
I have worked out a solution that works nicely on an iPhone 4S (not tested on any other devices). It builds on the idea of rendering world-space quads, and does the silhouette detection all on the GPU. It works along these lines (pun not intended):
We generate edge information. This consists of a list of edges/"lines" in the mesh, and for each we associate two normals which represent the tris on either side of the edge.
This is processed into a set of quads that are uploaded to the GPU - each quad represents an edge. Each vertex of each quad is accompanied by three attributes (vec3s), namely the edge direction vector and the two neighbor tri normals. All quads are passed w/o "thickness" - i.e. the vertices on either end are in the same position. However, the edge direction vector is opposite for each vertex in the same position. This means they will extrude in opposite directions to form a quad when required.
We determine whether a vertex is part of a visible edge in the vertex shader by performing two dot products between each tri norm and the view vector and checking if they have opposite signs. (see standard silhouette algorithms around the net for details)
For vertices that are part of visible edges, we take the cross product of the edge direction vector with the view vector to get a screen-oriented "extrusion" vector. We add this vector to the vertex, but divided by the w value of the projected vertex in order to create a constant thickness quad.
This does not directly resolve the gaps that can appear between neighbor edges but is far more flexible when it comes to combating this. One solution may involve bridging the vertices between large angled lines with another quad, which I am exploring at the moment.

Open GL - ES 2.0 : Touch detection

Hi Guys I am doing some work on iOS and the work requires use of OpenGL es. So now I have a bunch of squares, cubes and triangles on the screen. Some of these geometries might overlap. Any ideas/ approaches for touch detection?
Regards
To follow up on the answer already given, squares, cubes and triangles are convex shapes so you can perform ray-object intersection quite easily, even directly from the geometry rather than from the mathematical description of the perfect object.
You're going to need to be able to calculate the distance of a point from the plane and the intersection of a ray with the plane. As a simple test you can implement yourself very quickly, for each polygon on the convex shape work out the intersection between the ray and the plane. Then check whether that point is behind all the planes defined by polygons that share an edge with the one you just tested. If so then the hit is on the surface of the object — though you should be careful about coplanar adjoining polygons and rounding errors.
Once you've found a collision you can easily get the length of the ray to the point of collision. The object with the shortest distance is the one that's in front.
If that's fast enough then great, otherwise you'll probably want to look into partitioning the world or breaking objects down to their silhouettes. Convex objects are really simple — consider all the edges that run between one polygon and the next. If only exactly one of those polygons is front facing then the edge is part of the silhouette. All the silhouettes edges together can be projected to a convex 2d shape on the view plane. You can then test touches by performing a 2d point-in-polygon from that.
A further common alternative that eliminates most of the maths is picking. You'd render the scene to an invisible buffer with each object appearing as a solid blob in a suitably unique colour. To test for touch, you'd just do a glReadPixels and inspect the colour.
For the purposes of glu on the iPhone, you can grab SGI's implementation (as used by MESA). I've used its tessellator in a shipping, production project before.
I had that problem in the past. What I have used is an implementation of glu unproject that you can find on google (it uses the inverse of the model view projection matrix and the viewport size). This allows you to map the 2D screen coordinates to a 3D vector into the world. Then, you can use this vector to intersect with your objects and see which one intersects (or comes really close to doing so).
I do hope there are better ways of doing this, so I look forward to other answers as well!
Once you get the inverse-modelview and cast your ray (vector), you still need to know if the ray intersects your geometry. One approach would be to grab the depth (z in view coordinate system) of the object's center and extend (stretch) your vector just that far. Then see if the vector's "head" ends within the volume of your object or not (you need the objects center and e.g. Its radius, if it's a sphere)

Iphone OpenGL : glOrthof vs glFrustumf. is glOrthof not 3D?

having a bad coding day.
Right I need to make a 3D cube that spins around etc via user interaction. Hey no biggy.
All the examples to make a 3D cube seem to use glOrthof and when I demo one to people they say its not 3D.
The problem is that glFrustumf seems to put me in the cube instead of in front of me. I cant move it back using glTransform because it re-uses the ModelView Matrix (I even tried manually modifying that)
/* save current rotation state */
GLfloat matrix[16];
glGetFloatv(GL_MODELVIEW_MATRIX, matrix);
/* re-center cube, apply new rotation */
glLoadIdentity();
glRotatef(self.angle, self.dy,self.dx,0);
/* reapply other rotations so far */
glMultMatrixf(matrix);
So questions are.
To do a 3D cube must I use glFrustumf and if so, how the hell do I step back 5 but still re-use the model matrix (it keeps the cube spinning in what ever direction the user moves it)
I'm not sure what you mean by glOrthof() "not being 3-D". The rotating cube example I have here (using both OpenGL ES 1.1 and 2.0 for rendering of the textured cube) seems to work on 3-D, and I use glOrthof() in the OpenGL ES 1.1 side of the renderer. Shading and other effects can be applied independently of the glOrthof() usage.
In that example, I don't read back the model view matrix to manipulate the cube. Instead, I keep a copy of the matrix locally and modify that using some Core Animation helper functions. In addition to the CATransform3DRotate() that I perform on the cube, you should be able to throw in a CATransform3DTranslate() to displace it in a certain direction, while still being able to spin it.
I keep a local copy of the model view matrix for performance (reading back the model view matrix halts the rendering pipeline on OpenGL ES 1.1), and for compatibility with 2.0 (where you need to send the matrix as a uniform to the shaders).
Also, in an answer to your later question (which might get closed), you can't just arbitrarily change values within the model view matrix and expect to see linear displacements from that. You need to get the math right, and matrix math was never one of my strong points. I find it best to let a transform operation (like those provided in Core Animation) do the math for you when manipulating matrices.