How to improve accuracy of decision tree in matlab - matlab

I have a set of data which I classify them in matlab using decision tree. I divide the set into two parts; one training data(85%) and the other test data(15%). The problem is that the accuracy is around %90 and I do not know how I can improve it. I would appreciate if you have any idea about it.

Decision trees might be performing low because of many reasons, one prominent reason which I can think of is that while calculating a split they do not consider inter-dependency of variables or of target variable on other variables.
Before going into improving the performance, one should be aware that it shall not cause over-fitting and shall be able to generalize.
To improve performance these few things can be done:
Variable preselection: Different tests can be done like multicollinearity test, VIF calculation, IV calculation on variables to select only a few top variables. This will lead in improved performance as it would strictly cut out the undesired variables.
Ensemble Learning Use multiple trees (random forests) to predict the outcomes. Random forests in general perform well than a single decision tree as they manage to reduce both bias and variance. They are less prone to overfitting as well.
K-Fold cross validation: Cross validation in the training data itself can improve the performance of the model a bit.
Hybrid Model: Use a hybrid model, i.e. use logistic regression after using decision trees to improve performance.

I guess the more important question here is what's a good accuracy for the given domain: if you're classifying spam then 90% might be a bit low, but if you're predicting stock prices then 90% is really high!
If you're doing this on a known domain set and there are previous examples of classification accuracy which is higher than yours, then you can try several things:
K-Fold Cross Validation
Ensamble Learning
Generalized Iterative Scaling (GIS)
Logistic Regression

I don't think you should improve this, may be the data is overfitted by the classifier. Try to use another data sets, or cross-validation to see the more accurate result.
By the way, 90%, if not overfitted, is great result, may be you even don't need to improve it.

You could look into pruning the leaves to improve the generalization of the decision tree. But as was mentioned, 90% accuracy can be considered quite good..

90% is good or bad, depends on the domain of the data.
However, it might be that the classes in your data are overlapping and you can't really do more than 90%.
You can try to look in what nodes are the errors, and check if it's possible to improve the classification by changing them.
You can also try Random Forest.

Related

Shouldn't we take average of n models in cross validation in linear regression?

I have a question regarding cross validation in Linear regression model.
From my understanding, in cross validation, we split the data into (say) 10 folds and train the data from 9 folds and the remaining folds we use for testing. We repeat this process until we test all of the folds, so that every folds are tested exactly once.
When we are training the model from 9 folds, should we not get a different model (may be slightly different from the model that we have created when using the whole dataset)? I know that we take an average of all the "n" performances.
But, what about the model? Shouldn't the resulting model also be taken as the average of all the "n" models? I see that the resulting model is same as the model which we created using whole of the dataset before cross-validation. If we are considering the overall model even after cross-validation (and not taking avg of all the models), then what's the point of calculating average performance from n different models (because they are trained from different folds of data and are supposed to be different, right?)
I apologize if my question is not clear or too funny.
Thanks for reading, though!
I think that there is some confusion in some of the answers proposed because of the use of the word "model" in the question asked. If I am guessing correctly, you are referring to the fact that in K-fold cross-validation we learn K-different predictors (or decision functions), which you call "model" (this is a bad idea because in machine learning we also do model selection which is choosing between families of predictors and this is something which can be done using cross-validation). Cross-validation is typically used for hyperparameter selection or to choose between different algorithms or different families of predictors. Once these chosen, the most common approach is to relearn a predictor with the selected hyperparameter and algorithm from all the data.
However, if the loss function which is optimized is convex with respect to the predictor, than it is possible to simply average the different predictors obtained from each fold.
This is because for a convex risk, the risk of the average of the predictor is always smaller than the average of the individual risks.
The PROs and CONs of averaging (vs retraining) are as follows
PROs: (1) In each fold, the evaluation that you made on the held out set gives you an unbiased estimate of the risk for those very predictors that you have obtained, and for these estimates the only source of uncertainty is due to the estimate of the empirical risk (the average of the loss function) on the held out data.
This should be contrasted with the logic which is used when you are retraining and which is that the cross-validation risk is an estimate of the "expected value of the risk of a given learning algorithm" (and not of a given predictor) so that if you relearn from data from the same distribution, you should have in average the same level of performance. But note that this is in average and when retraining from the whole data this could go up or down. In other words, there is an additional source of uncertainty due to the fact that you will retrain.
(2) The hyperparameters have been selected exactly for the number of datapoints that you used in each fold to learn. If you relearn from the whole dataset, the optimal value of the hyperparameter is in theory and in practice not the same anymore, and so in the idea of retraining, you really cross your fingers and hope that the hyperparameters that you have chosen are still fine for your larger dataset.
If you used leave-one-out, there is obviously no concern there, and if the number of data point is large with 10 fold-CV you should be fine. But if you are learning from 25 data points with 5 fold CV, the hyperparameters for 20 points are not really the same as for 25 points...
CONs: Well, intuitively you don't benefit from training with all the data at once
There are unfortunately very little thorough theory on this but the following two papers especially the second paper consider precisely the averaging or aggregation of the predictors from K-fold CV.
Jung, Y. (2016). Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models. International Journal of Mathematical and Computational Sciences, 10(1), 19-25.
Maillard, G., Arlot, S., & Lerasle, M. (2019). Aggregated Hold-Out. arXiv preprint arXiv:1909.04890.
The answer is simple: you use the process of (repeated) cross validation (CV) to obtain a relatively stable performance estimate for a model instead of improving it.
Think of trying out different model types and parametrizations which are differently well suited for your problem. Using CV you obtain many different estimates on how each model type and parametrization would perform on unseen data. From those results you usually choose one well suited model type + parametrization which you will use, then train it again on all (training) data. The reason for doing this many times (different partitions with repeats, each using different partition splits) is to get a stable estimation of the performance - which will enable you to e.g. look at the mean/median performance and its spread (would give you information about how well the model usually performs and how likely it is to be lucky/unlucky and get better/worse results instead).
Two more things:
Usually, using CV will improve your results in the end - simply because you take a model that is better suited for the job.
You mentioned taking the "average" model. This actually exists as "model averaging", where you average the results of multiple, possibly differently trained models to obtain a single result. Its one way to use an ensemble of models instead of a single one. But also for those you want to use CV in the end for choosing reasonable model.
I like your thinking. I think you have just accidentally discovered Random Forest:
https://en.wikipedia.org/wiki/Random_forest
Without repeated cv your seemingly best model is likely to be only a mediocre model when you score it on new data...

Is it necessary to normalize data when using Matlab's ANN?

Is it necessary to use mapstd or mapminmax to normalize the data when training a neural network in Matlab? Both functions documentation state that this is done automatically when declaring feedforwardnet, however, I have read that people still normalize it. So why would I normalize it if it's done automatically by Matlab? Is it necessary?
On initial stages of learning you can omit normalization. But if you will have desire to improve your learning results significantly you'll not be able to avoid normalization. I can even tell you more, you maybe even will need scaling of data as well. As a way of example, our brain do normalization as well. For example if you hear, that some country spend 100 million of dollars for housing. Then your brain give question what is population of that country. If it is small country with population 1000 citizens, you can consider it as big value. But if it is big country with 1.2 billion of citizens you'll consider it as drop of water in ocean. If to summarize, initially you can omit normalization, but at improvement stage it will not be avoidable.
If you use feedforwardnet it's not necessary, but if you use outdate functions like newff you need. For futher details.

Genetic algorithm for classification

I am trying to solve classification problem using Matlab GPTIPS framework.
I managed to build reasonable data representation and fitness function so far and got an average accuracy per class near 65%.
What I need now is some help with two difficulties:
My data is biased. Basically I am solving binary classification problem and only 20% of data belongs to class 1, while other 80% belong to class 0. I used accuracy of prediction as my fitness function at first, but it was really bad. The best I have now is
Fitness = 0.5*(PositivePredictiveValue + NegativePredictiveValue) - const*ComplexityOfSolution
Please, advize, how can I improve my function to make correction for data bias.
Second problem is overfitting. I divided my data into three parts: training (70%), testing (20%), validation (10%). I train each chromosome on training set, then evaluate it's fitness function on testing set. This routine allows me to reach fitness of 0.82 on my test data for the best individual in population. But same individual's result on validation data is only 60%.
I added validation check for best individual each time before new population is generated. Then I compare fitness on validation set with fitness on test set. If difference is more then 5%, then I increase penalty for solution complexity in my fitness function. But it didn't help.
I could also try to evaluate all individuals with validation set during each generation, and simply remove overfitted ones. But then I don't see any difference between my test and validation data. What else can be done here?
UPDATE:
For my second question I've found great article "Experiments on Controlling Overtting
in Genetic Programming" Along with some article authors' ideas on dealing with overfitting in GP it has impressive review with a lot of references to many different approaches to the issue. Now I have a lot of new ideas I can try for my problem.
Unfortunately, still cant' find anything on selecting a proper fitness function which will take into account unbalanced class proportions in my data.
65% accuracy is very bad when the baseline (classify everything as the class with most samples) would be 80%. You need to achieve at least baseline classification in order to have a better model than the naive one.
I would not penalize complexity. Rather limit the tree size (if possible). You could identify simpler models during the run, like storing a pareto front of models with quality and complexity as its two fitness values.
In HeuristicLab we have integrated GP based classification that can do these things. There are several options: You can choose to use MSE for classification or R2. In the latest trunk build there is also an evaluator to optimize accuracy directly (exactly speaking it optimizes the classification penalties). Optimizing MSE means it assigns each class a value (1, 2, 3,...) and tries to minimize mean squared error from that value. This may not seem optimal at first, but works. Optimizing accuracy directly may lead to faster overfitting. There is also a formula simplifier which allows you to prune and shrink your formula (and view the effects of that).
Also, does it need to be GP? Have you tried Random Forest Classification or Support Vector Machines as well? RF are pretty fast and work pretty well usually.

Choose the right classification algorithm. Linear or non-linear? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 3 years ago.
Improve this question
I find this question a little tricky. Maybe someone knows an approach to answer this question. Imagine that you have a dataset(training data) which you don't know what it is about. Which features of training data would you look at in order to infer classification algorithm to classify this data? Can we say anything whether we should use a non-linear or linear classification algorithm?
By the way, I am using WEKA to analyze the data.
Any suggestions?
Thank you.
This is in fact two questions in one ;-)
Feature selection
Linear or not
add "algorithm selection", and you probably have three most fundamental questions of classifier design.
As an aside note, it's a good thing that you do not have any domain expertise which would have allowed you to guide the selection of features and/or to assert the linearity of the feature space. That's the fun of data mining : to infer such info without a priori expertise. (BTW, and while domain expertise is good to double-check the outcome of the classifier, too much a priori insight may make you miss good mining opportunities). Without any such a priori knowledge you are forced to establish sound methodologies and apply careful scrutiny to the results.
It's hard to provide specific guidance, in part because many details are left out in the question, and also because I'm somewhat BS-ing my way through this ;-). Never the less I hope the following generic advice will be helpful
For each algorithm you try (or more precisely for each set of parameters for a given algorithm), you will need to run many tests. Theory can be very helpful, but there will remain a lot of "trial and error". You'll find Cross-Validation a valuable technique.
In a nutshell, [and depending on the size of the available training data], you randomly split the training data in several parts and train the classifier on one [or several] of these parts, and then evaluate the classifier on its performance on another [or several] parts. For each such run you measure various indicators of performance such as Mis-Classification Error (MCE) and aside from telling you how the classifier performs, these metrics, or rather their variability will provide hints as to the relevance of the features selected and/or their lack of scale or linearity.
Independently of the linearity assumption, it is useful to normalize the values of numeric features. This helps with features which have an odd range etc.
Within each dimension, establish the range within, say, 2.5 standard deviations on either side of the median, and convert the feature values to a percentage on the basis of this range.
Convert nominal attributes to binary ones, creating as many dimensions are there are distinct values of the nominal attribute. (I think many algorithm optimizers will do this for you)
Once you have identified one or a few classifiers with a relatively decent performance (say 33% MCE), perform the same test series, with such a classifier by modifying only one parameter at a time. For example remove some features, and see if the resulting, lower dimensionality classifier improves or degrades.
The loss factor is a very sensitive parameter. Try and stick with one "reasonnable" but possibly suboptimal value for the bulk of the tests, fine tune the loss at the end.
Learn to exploit the "dump" info provided by the SVM optimizers. These results provide very valuable info as to what the optimizer "thinks"
Remember that what worked very well wih a given dataset in a given domain may perform very poorly with data from another domain...
coffee's good, not too much. When all fails, make it Irish ;-)
Wow, so you have some training data and you don't know whether you are looking at features representing words in a document, or genese in a cell and need to tune a classifier. Well, since you don't have any semantic information, you are going to have to do this soley by looking at statistical properties of the data sets.
First, to formulate the problem, this is more than just linear vs non-linear. If you are really looking to classify this data, what you really need to do is to select a kernel function for the classifier which may be linear, or non-linear (gaussian, polynomial, hyperbolic, etc. In addition each kernel function may take one or more parameters that would need to be set. Determining an optimal kernel function and parameter set for a given classification problem is not really a solved problem, there are only useful heuristics and if you google 'selecting a kernel function' or 'choose kernel function', you will be treated to many research papers proposing and testing various approaches. While there are many approaches, one of the most basic and well travelled is to do a gradient descent on the parameters-- basically you try a kernel method and a parameter set , train on half your data points and see how you do. Then you try a different set of parameters and see how you do. You move the parameters in the direction of best improvement in accuracy until you get satisfactory results.
If you don't need to go through all this complexity to find a good kernel function, and simply want an answer to linear or non-linear. then the question mainly comes down to two things: Non linear classifiers will have a higher risk of overfitting (undergeneralizing) since they have more dimensions of freedom. They can suffer from the classifier merely memorizing sets of good data points, rather than coming up with a good generalization. On the other hand a linear classifier has less freedom to fit, and in the case of data that is not linearly seperable, will fail to find a good decision function and suffer from high error rates.
Unfortunately, I don't know a better mathematical solution to answer the question "is this data linearly seperable" other than to just try the classifier itself and see how it performs. For that you are going to need a smarter answer than mine.
Edit: This research paper describes an algorithm which looks like it should be able to determine how close a given data set comes to being linearly seperable.
http://www2.ift.ulaval.ca/~mmarchand/publications/wcnn93aa.pdf

Neural Net Optimize w/ Genetic Algorithm

Is a genetic algorithm the most efficient way to optimize the number of hidden nodes and the amount of training done on an artificial neural network?
I am coding neural networks using the NNToolbox in Matlab. I am open to any other suggestions of optimization techniques, but I'm most familiar with GA's.
Actually, there are multiple things that you can optimize using GA regarding NN.
You can optimize the structure (number of nodes, layers, activation function etc.).
You can also train using GA, that means setting the weights.
Genetic algorithms will never be the most efficient, but they usually used when you have little clue as to what numbers to use.
For training, you can use other algorithms including backpropagation, nelder-mead etc..
You said you wanted to optimize number hidden nodes, for this, genetic algorithm may be sufficient, although far from "optimal". The space you are searching is probably too small to use genetic algorithms, but they can still work and afaik, they are already implemented in matlab, so no biggie.
What do you mean by optimizing amount of training done? If you mean number of epochs, then that's fine, just remember that training is somehow dependent on starting weights and they are usually random, so the fitness function used for GA won't really be a function.
A good example of neural networks and genetic programming is the NEAT architecture (Neuro-Evolution of Augmenting Topologies). This is a genetic algorithm that finds an optimal topology. It's also known to be good at keeping the number of hidden nodes down.
They also made a game using this called Nero. Quite unique and very amazing tangible results.
Dr. Stanley's homepage:
http://www.cs.ucf.edu/~kstanley/
Here you'll find just about everything NEAT related as he is the one who invented it.
Genetic algorithms can be usefully applied to optimising neural networks, but you have to think a little about what you want to do.
Most "classic" NN training algorithms, such as Back-Propagation, only optimise the weights of the neurons. Genetic algorithms can optimise the weights, but this will typically be inefficient. However, as you were asking, they can optimise the topology of the network and also the parameters for your training algorithm. You'll have to be especially wary of creating networks that are "over-trained" though.
One further technique with a modified genetic algorithms can be useful for overcoming a problem with Back-Propagation. Back-Propagation usually finds local minima, but it finds them accurately and rapidly. Combining a Genetic Algorithm with Back-Propagation, e.g., in a Lamarckian GA, gives the advantages of both. This technique is briefly described during the GAUL tutorial
It is sometimes useful to use a genetic algorithm to train a neural network when your objective function isn't continuous.
I'm not sure whether you should use a genetic algorithm for this.
I suppose the initial solution population for your genetic algorithm would consist of training sets for your neural network (given a specific training method). Usually the initial solution population consists of random solutions to your problem. However, random training sets would not really train your neural network.
The evaluation algorithm for your genetic algorithm would be a weighed average of the amount of training needed, the quality of the neural network in solving a specific problem and the numer of hidden nodes.
So, if you run this, you would get the training set that delivered the best result in terms of neural network quality (= training time, number hidden nodes, problem solving capabilities of the network).
Or are you considering an entirely different approach?
I'm not entirely sure what kind of problem you're working with, but GA sounds like a little bit of overkill here. Depending on the range of parameters you're working with, an exhaustive (or otherwise unintelligent) search may work. Try plotting your NN's performance with respect to number of hidden nodes for a first few values, starting small and jumping by larger and larger increments. In my experience, many NNs plateau in performance surprisingly early; you may be able to get a good picture of what range of hidden node numbers makes the most sense.
The same is often true for NNs' training iterations. More training helps networks up to a point, but soon ceases to have much effect.
In the majority of cases, these NN parameters don't affect performance in a very complex way. Generally, increasing them increases performance for a while but then diminishing returns kick in. GA is not really necessary to find a good value on this kind of simple curve; if the number of hidden nodes (or training iterations) really does cause the performance to fluctuate in a complicated way, then metaheuristics like GA may be apt. But give the brute-force approach a try before taking that route.
I would tend to say that genetic algorithms is a good idea since you can start with a minimal solution and grow the number of neurons. It is very likely that the "quality function" for which you want to find the optimal point is smooth and has only few bumps.
If you have to find this optimal NN frequently I would recommend using optimization algorithms and in your case quasi newton as described in numerical recipes which is optimal for problems where the function is expensive to evaluate.