Genetic algorithm for classification - classification

I am trying to solve classification problem using Matlab GPTIPS framework.
I managed to build reasonable data representation and fitness function so far and got an average accuracy per class near 65%.
What I need now is some help with two difficulties:
My data is biased. Basically I am solving binary classification problem and only 20% of data belongs to class 1, while other 80% belong to class 0. I used accuracy of prediction as my fitness function at first, but it was really bad. The best I have now is
Fitness = 0.5*(PositivePredictiveValue + NegativePredictiveValue) - const*ComplexityOfSolution
Please, advize, how can I improve my function to make correction for data bias.
Second problem is overfitting. I divided my data into three parts: training (70%), testing (20%), validation (10%). I train each chromosome on training set, then evaluate it's fitness function on testing set. This routine allows me to reach fitness of 0.82 on my test data for the best individual in population. But same individual's result on validation data is only 60%.
I added validation check for best individual each time before new population is generated. Then I compare fitness on validation set with fitness on test set. If difference is more then 5%, then I increase penalty for solution complexity in my fitness function. But it didn't help.
I could also try to evaluate all individuals with validation set during each generation, and simply remove overfitted ones. But then I don't see any difference between my test and validation data. What else can be done here?
UPDATE:
For my second question I've found great article "Experiments on Controlling Overtting
in Genetic Programming" Along with some article authors' ideas on dealing with overfitting in GP it has impressive review with a lot of references to many different approaches to the issue. Now I have a lot of new ideas I can try for my problem.
Unfortunately, still cant' find anything on selecting a proper fitness function which will take into account unbalanced class proportions in my data.

65% accuracy is very bad when the baseline (classify everything as the class with most samples) would be 80%. You need to achieve at least baseline classification in order to have a better model than the naive one.
I would not penalize complexity. Rather limit the tree size (if possible). You could identify simpler models during the run, like storing a pareto front of models with quality and complexity as its two fitness values.
In HeuristicLab we have integrated GP based classification that can do these things. There are several options: You can choose to use MSE for classification or R2. In the latest trunk build there is also an evaluator to optimize accuracy directly (exactly speaking it optimizes the classification penalties). Optimizing MSE means it assigns each class a value (1, 2, 3,...) and tries to minimize mean squared error from that value. This may not seem optimal at first, but works. Optimizing accuracy directly may lead to faster overfitting. There is also a formula simplifier which allows you to prune and shrink your formula (and view the effects of that).
Also, does it need to be GP? Have you tried Random Forest Classification or Support Vector Machines as well? RF are pretty fast and work pretty well usually.

Related

How to deal with the randomness of NN training process?

Consider the training process of deep FF neural network using mini-batch gradient descent. As far as I understand, at each epoch of the training we have different random set of mini-batches. Then iterating over all mini batches and computing the gradients of the NN parameters we will get random gradients at each iteration and, therefore, random directions for the model parameters to minimize the cost function. Let's imagine we fixed the hyperparameters of the training algorithm and started the training process again and again, then we would end up with models, which completely differs from each other, because in those trainings the changes of model parameters were different.
1) Is it always the case when we use such random based training algorithms?
2) If it is so, where is the guaranty that training the NN one more time with the best hyperparameters found during the previous trainings and validations will yield us the best model again?
3) Is it possible to find such hyperparameters, which will always yield the best models?
Neural Network are solving a optimization problem, As long as it is computing a gradient in right direction but can be random, it doesn't hurt its objective to generalize over data. It can stuck in some local optima. But there are many good methods like Adam, RMSProp, momentum based etc, by which it can accomplish its objective.
Another reason, when you say mini-batch, there is at least some sample by which it can generalize over those sample, there can be fluctuation in the error rate, and but at least it can give us a local solution.
Even, at each random sampling, these mini-batch have different-2 sample, which helps in generalize well over the complete distribution.
For hyperparameter selection, you need to do tuning and validate result on unseen data, there is no straight forward method to choose these.

Neural Network - Working with a imbalanced dataset

I am working on a Classification problem with 2 labels : 0 and 1. My training dataset is a very imbalanced dataset (and so will be the test set considering my problem).
The proportion of the imbalanced dataset is 1000:4 , with label '0' appearing 250 times more than label '1'. However, I have a lot of training samples : around 23 millions. So I should get around 100 000 samples for the label '1'.
Considering the big number of training samples I have, I didn't consider SVM. I also read about SMOTE for Random Forests. However, I was wondering whether NN could be efficient to handle this kind of imbalanced dataset with a large dataset ?
Also, as I am using Tensorflow to design the model, which characteristics should/could I tune to be able to handle this imbalanced situation ?
Thanks for your help !
Paul
Update :
Considering the number of answers, and that they are quite similar, I will answer all of them here, as a common answer.
1) I tried during this weekend the 1st option, increasing the cost for the positive label. Actually, with less unbalanced proportion (like 1/10, on another dataset), this seems to help a bit to get a better result, or at least to 'bias' the precision/recall scores proportion.
However, for my situation,
It seems to be very sensitive to the alpha number. With alpha = 250, which is the proportion of the unbalanced dataset, I have a precision of 0.006 and a recall score of 0.83, but the model is predicting way too many 1 that it should be - around 0.50 of label '1' ...
With alpha = 100, the model predicts only '0'. I guess I'll have to do some 'tuning' for this alpha parameter :/
I'll take a look at this function from TF too as I did it manually for now : tf.nn.weighted_cross_entropy_with_logitsthat
2) I will try to de-unbalance the dataset but I am afraid that I will lose a lot of info doing that, as I have millions of samples but only ~ 100k positive samples.
3) Using a smaller batch size seems indeed a good idea. I'll try it !
There are usually two common ways for imbanlanced dataset:
Online sampling as mentioned above. In each iteration you sample a class-balanced batch from the training set.
Re-weight the cost of two classes respectively. You'd want to give the loss on the dominant class a smaller weight. For example this is used in the paper Holistically-Nested Edge Detection
I will expand a bit on chasep's answer.
If you are using a neural network followed by softmax+cross-entropy or Hinge Loss you can as #chasep255 mentionned make it more costly for the network to misclassify the example that appear the less.
To do that simply split the cost into two parts and put more weights on the class that have fewer examples.
For simplicity if you say that the dominant class is labelled negative (neg) for softmax and the other the positive (pos) (for Hinge you could exactly the same):
L=L_{neg}+L_{pos} =>L=L_{neg}+\alpha*L_{pos}
With \alpha greater than 1.
Which would translate in tensorflow for the case of cross-entropy where the positives are labelled [1, 0] and the negatives [0,1] to something like :
cross_entropy_mean=-tf.reduce_mean(targets*tf.log(y_out)*tf.constant([alpha, 1.]))
Whatismore by digging a bit into Tensorflow API you seem to have a tensorflow function tf.nn.weighted_cross_entropy_with_logitsthat implements it did not read the details but look fairly straightforward.
Another way if you train your algorithm with mini-batch SGD would be make batches with a fixed proportion of positives.
I would go with the first option as it is slightly easier to do with TF.
One thing I might try is weighting the samples differently when calculating the cost. For instance maybe divide the cost by 250 if the expected result is a 0 and leave it alone if the expected result is a one. This way the more rare samples have more of an impact. You could also simply try training it without any changes and see if the nnet just happens to work. I would make sure to use a large batch size though so you always get at least one of the rare samples in each batch.
Yes - neural network could help in your case. There are at least two approaches to such problem:
Leave your set not changed but decrease the size of batch and number of epochs. Apparently this might help better than keeping the batch size big. From my experience - in the beginning network is adjusting its weights to assign the most probable class to every example but after many epochs it will start to adjust itself to increase performance on all dataset. Using cross-entropy will give you additional information about probability of assigning 1 to a given example (assuming your network has sufficient capacity).
Balance your dataset and adjust your score during evaluation phase using Bayes rule:score_of_class_k ~ score_from_model_for_class_k / original_percentage_of_class_k.
You may reweight your classes in the cost function (as mentioned in one of the answers). Important thing then is to also reweight your scores in your final answer.
I'd suggest a slightly different approach. When it comes to image data, the deep learning community has already come up with a few ways to augment data. Similar to image augmentation, you could try to generate fake data to "balance" your dataset. The approach I tried was to use a Variational Autoencoder and then sample from the underlying distribution to generate fake data for the class you want. I tried it and the results are looking pretty cool: https://lschmiddey.github.io/fastpages_/2021/03/17/data-augmentation-tabular-data.html

Shouldn't we take average of n models in cross validation in linear regression?

I have a question regarding cross validation in Linear regression model.
From my understanding, in cross validation, we split the data into (say) 10 folds and train the data from 9 folds and the remaining folds we use for testing. We repeat this process until we test all of the folds, so that every folds are tested exactly once.
When we are training the model from 9 folds, should we not get a different model (may be slightly different from the model that we have created when using the whole dataset)? I know that we take an average of all the "n" performances.
But, what about the model? Shouldn't the resulting model also be taken as the average of all the "n" models? I see that the resulting model is same as the model which we created using whole of the dataset before cross-validation. If we are considering the overall model even after cross-validation (and not taking avg of all the models), then what's the point of calculating average performance from n different models (because they are trained from different folds of data and are supposed to be different, right?)
I apologize if my question is not clear or too funny.
Thanks for reading, though!
I think that there is some confusion in some of the answers proposed because of the use of the word "model" in the question asked. If I am guessing correctly, you are referring to the fact that in K-fold cross-validation we learn K-different predictors (or decision functions), which you call "model" (this is a bad idea because in machine learning we also do model selection which is choosing between families of predictors and this is something which can be done using cross-validation). Cross-validation is typically used for hyperparameter selection or to choose between different algorithms or different families of predictors. Once these chosen, the most common approach is to relearn a predictor with the selected hyperparameter and algorithm from all the data.
However, if the loss function which is optimized is convex with respect to the predictor, than it is possible to simply average the different predictors obtained from each fold.
This is because for a convex risk, the risk of the average of the predictor is always smaller than the average of the individual risks.
The PROs and CONs of averaging (vs retraining) are as follows
PROs: (1) In each fold, the evaluation that you made on the held out set gives you an unbiased estimate of the risk for those very predictors that you have obtained, and for these estimates the only source of uncertainty is due to the estimate of the empirical risk (the average of the loss function) on the held out data.
This should be contrasted with the logic which is used when you are retraining and which is that the cross-validation risk is an estimate of the "expected value of the risk of a given learning algorithm" (and not of a given predictor) so that if you relearn from data from the same distribution, you should have in average the same level of performance. But note that this is in average and when retraining from the whole data this could go up or down. In other words, there is an additional source of uncertainty due to the fact that you will retrain.
(2) The hyperparameters have been selected exactly for the number of datapoints that you used in each fold to learn. If you relearn from the whole dataset, the optimal value of the hyperparameter is in theory and in practice not the same anymore, and so in the idea of retraining, you really cross your fingers and hope that the hyperparameters that you have chosen are still fine for your larger dataset.
If you used leave-one-out, there is obviously no concern there, and if the number of data point is large with 10 fold-CV you should be fine. But if you are learning from 25 data points with 5 fold CV, the hyperparameters for 20 points are not really the same as for 25 points...
CONs: Well, intuitively you don't benefit from training with all the data at once
There are unfortunately very little thorough theory on this but the following two papers especially the second paper consider precisely the averaging or aggregation of the predictors from K-fold CV.
Jung, Y. (2016). Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models. International Journal of Mathematical and Computational Sciences, 10(1), 19-25.
Maillard, G., Arlot, S., & Lerasle, M. (2019). Aggregated Hold-Out. arXiv preprint arXiv:1909.04890.
The answer is simple: you use the process of (repeated) cross validation (CV) to obtain a relatively stable performance estimate for a model instead of improving it.
Think of trying out different model types and parametrizations which are differently well suited for your problem. Using CV you obtain many different estimates on how each model type and parametrization would perform on unseen data. From those results you usually choose one well suited model type + parametrization which you will use, then train it again on all (training) data. The reason for doing this many times (different partitions with repeats, each using different partition splits) is to get a stable estimation of the performance - which will enable you to e.g. look at the mean/median performance and its spread (would give you information about how well the model usually performs and how likely it is to be lucky/unlucky and get better/worse results instead).
Two more things:
Usually, using CV will improve your results in the end - simply because you take a model that is better suited for the job.
You mentioned taking the "average" model. This actually exists as "model averaging", where you average the results of multiple, possibly differently trained models to obtain a single result. Its one way to use an ensemble of models instead of a single one. But also for those you want to use CV in the end for choosing reasonable model.
I like your thinking. I think you have just accidentally discovered Random Forest:
https://en.wikipedia.org/wiki/Random_forest
Without repeated cv your seemingly best model is likely to be only a mediocre model when you score it on new data...

K nearest neighbour validation performance

I am using knn to do classification for a telecom problem. I splitted my data into 70% training and 30% validation. While the knn classifier is able to catch over 80% in 2 deciles in training, its performance in validation sample is as good as random 45 degree line. I am surprised how does KNN work that the model performance in training and validation are so different.
Any pointers ?
Reasonable pointers are hardly possible without more details. The behavior of your KNN depends on several aspects:
The parameter K defining the neighbors. If it is set to K=1, for example, you will get no training error at all, this showing that the consideration of training-to-validation-error may not be justified.
The parameter K is often found using cross validation. I would suggest you to do this as well.
The distance metric. Which function are you using, are there different units, length scales, etc.?
The noise of your data, the size of your data ... -- there simply exist data sets which are hard to describe.
By the way: can you tell what kind of data you want to describe, and, if possible, also provide some examples or show some scatter plot (data and your result)?

why we need cross validation in multiSVM method for image classification?

I am new to image classification, currently working on SVM(support Vector Machine) method for classifying four groups of images by multisvm function, my algorithm every time the training and testing data are randomly selected and the performance is varies at every time. Some one suggested to do cross validation i did not understand why we need cross validation and what is the main purpose of this? . My actual data set consist training matrix size 28×40000 and testing matrix size 17×40000. how to do cross validation by this data set help me. thanks in advance .
Cross validation is used to select your model. The out-of-sample error can be estimated from your validation error. As a result, you would like to select the model with the least validation error. Here the model refers to the features you want to use, and of more importance, the gamma and C in your SVM. After cross validation, you will use the selected gamma and C with the least average validation error to train the whole training data.
You may also need to estimate the performance of your features and parameters to avoid both high-bias and high-variance. Whether your model suffers underfitting or overfitting can be observed from both in-sample-error and validation error.
Ideally 10-fold is often used for cross validation.
I'm not familiar with multiSVM but you may want to check out libSVM, it is a popular, free SVM library with support for a number of different programming languages.
Here they describe cross validation briefly. It is a way to avoid over-fitting the model by breaking up the training data into sub groups. In this way you can find a model (defined by a set of parameters) which fits both sub groups optimally.
For example, in the following picture they plot the validation accuracy contours for parameterized gamma and C values which are used to define the model. From this contour plot you can tell that the heuristically optimal values (from those tested) are those that give an accuracy closer to 84 instead of 81.
Refer to this link for more detailed information on cross-validation.
You always need to cross-validate your experiments in order to guarantee a correct scientific approach. For instance, if you don't cross-validate, the results you read (such as accuracy) might be highly biased by your test set. In an extreme case, your training step might have been very weak (in terms of fitting data) and your test step might have been very good. This applies to ALL machine learning and optimization experiments, not only SVMs.
To avoid such problems just divide your initial dataset in two (for instance), then train in the first set and test in the second, and repeat the process invesely, training in the second and testing in the first. This will guarantee that any biases to the data are visible to you. As someone suggested, you can perform this with even further division: 10-fold cross-validation, means dividing your data set in 10 parts, then training in 9 and testing in 1, then repeating the process until you have tested in all parts.