Neural Net Optimize w/ Genetic Algorithm - matlab

Is a genetic algorithm the most efficient way to optimize the number of hidden nodes and the amount of training done on an artificial neural network?
I am coding neural networks using the NNToolbox in Matlab. I am open to any other suggestions of optimization techniques, but I'm most familiar with GA's.

Actually, there are multiple things that you can optimize using GA regarding NN.
You can optimize the structure (number of nodes, layers, activation function etc.).
You can also train using GA, that means setting the weights.
Genetic algorithms will never be the most efficient, but they usually used when you have little clue as to what numbers to use.
For training, you can use other algorithms including backpropagation, nelder-mead etc..
You said you wanted to optimize number hidden nodes, for this, genetic algorithm may be sufficient, although far from "optimal". The space you are searching is probably too small to use genetic algorithms, but they can still work and afaik, they are already implemented in matlab, so no biggie.
What do you mean by optimizing amount of training done? If you mean number of epochs, then that's fine, just remember that training is somehow dependent on starting weights and they are usually random, so the fitness function used for GA won't really be a function.

A good example of neural networks and genetic programming is the NEAT architecture (Neuro-Evolution of Augmenting Topologies). This is a genetic algorithm that finds an optimal topology. It's also known to be good at keeping the number of hidden nodes down.
They also made a game using this called Nero. Quite unique and very amazing tangible results.
Dr. Stanley's homepage:
http://www.cs.ucf.edu/~kstanley/
Here you'll find just about everything NEAT related as he is the one who invented it.

Genetic algorithms can be usefully applied to optimising neural networks, but you have to think a little about what you want to do.
Most "classic" NN training algorithms, such as Back-Propagation, only optimise the weights of the neurons. Genetic algorithms can optimise the weights, but this will typically be inefficient. However, as you were asking, they can optimise the topology of the network and also the parameters for your training algorithm. You'll have to be especially wary of creating networks that are "over-trained" though.
One further technique with a modified genetic algorithms can be useful for overcoming a problem with Back-Propagation. Back-Propagation usually finds local minima, but it finds them accurately and rapidly. Combining a Genetic Algorithm with Back-Propagation, e.g., in a Lamarckian GA, gives the advantages of both. This technique is briefly described during the GAUL tutorial

It is sometimes useful to use a genetic algorithm to train a neural network when your objective function isn't continuous.

I'm not sure whether you should use a genetic algorithm for this.
I suppose the initial solution population for your genetic algorithm would consist of training sets for your neural network (given a specific training method). Usually the initial solution population consists of random solutions to your problem. However, random training sets would not really train your neural network.
The evaluation algorithm for your genetic algorithm would be a weighed average of the amount of training needed, the quality of the neural network in solving a specific problem and the numer of hidden nodes.
So, if you run this, you would get the training set that delivered the best result in terms of neural network quality (= training time, number hidden nodes, problem solving capabilities of the network).
Or are you considering an entirely different approach?

I'm not entirely sure what kind of problem you're working with, but GA sounds like a little bit of overkill here. Depending on the range of parameters you're working with, an exhaustive (or otherwise unintelligent) search may work. Try plotting your NN's performance with respect to number of hidden nodes for a first few values, starting small and jumping by larger and larger increments. In my experience, many NNs plateau in performance surprisingly early; you may be able to get a good picture of what range of hidden node numbers makes the most sense.
The same is often true for NNs' training iterations. More training helps networks up to a point, but soon ceases to have much effect.
In the majority of cases, these NN parameters don't affect performance in a very complex way. Generally, increasing them increases performance for a while but then diminishing returns kick in. GA is not really necessary to find a good value on this kind of simple curve; if the number of hidden nodes (or training iterations) really does cause the performance to fluctuate in a complicated way, then metaheuristics like GA may be apt. But give the brute-force approach a try before taking that route.

I would tend to say that genetic algorithms is a good idea since you can start with a minimal solution and grow the number of neurons. It is very likely that the "quality function" for which you want to find the optimal point is smooth and has only few bumps.
If you have to find this optimal NN frequently I would recommend using optimization algorithms and in your case quasi newton as described in numerical recipes which is optimal for problems where the function is expensive to evaluate.

Related

What is the Difference between evolutionary computing and classification?

I am looking for some comprehensive description. I couldn't find it via browsing as things are more clustered on the web and its not in my scope currently.
Classification and evolutionary computing is comparing oranges to apples. Let me explain:
Classification is a type of problem, where the goal is to determine a label given some input. (Typical example, given pixel values, determine image label).
Evolutionary computing is a family of algorithms to solve different types of problems. They work with a "population" of candidates (imagine a set of different neural networks trying to solve a given problem). Somehow you evaluate how good each candidate is in the given task (typically using a "fitness function", but there are other methods). Then a new generation of candidates is produced, taking the best candidates from the previous generation as a model, and including mutations and cross-over (that is, introducing changes). Repeat until happy.
Evolutionary computing can absolutely be used for classification! But there are examples where it is used in different ways. You may use evolutionary computing to create an artificial neural network controlling a robot (in this case, inputs are sensor values, outputs are commands for actuators). Or to create original content free of a given goal, as in Picbreeder.
Classification may be solved using evolutionary computation (maybe this is why you where confused in the first place) but other techniques are also common. You can use decision trees, or notably deep-learning (based on backpropagation).
Deep-learning based on backpropagation may sound similar to evolutionary computation, but it is quite different. Here you have only one artificial neural network, and a clear rule (backpropagation) telling you which changes to introduce every iteration.
Hope this helps to complement other answers!
Classification algorithms and evolutionary computing are different approaches. However, they are related in some ways.
Classification algorithms aim to identify the class label of new instances. They are trained with some labeled instances. For example, recognition of digits is a classification algorithm.
Evolutionary algorithms are used to find out the minimum or maximum solution of an optimization problem. They randomly explore the solution space of the given problem. They can find a good solution in a reasonable time and are not able to find the global optimum in all problems.
In some classification approaches, evolutionary algorithms are used to find out the optimal value of the parameters.

Neural Network Architectures that add layers based on complexity?

I'm searching for existing work on Neural Net architectures that grow based on need or complexity/variability of training data. Some architectures that I've found include self-organizing maps, and growing Neural gas. Are these the only one's out there?
What I'm searching for is best illustrated by a simple scenario;
if the training data only has a few patterns, then the neural net would be 2-3 layers deep with a small set of nodes in each layer. If the training data was more convoluted, then we would see deeper networks.
Such work seems rare or absent in the AI literature. Is it because the performance is comparatively weak ? I'd appreciate any guidance.
An example of this is called neuro-evolution. What you could do is combine backprop with evolution to find the optimal structure for your dataset. Neataptic is one of the NN libraries which offers neuro-evolution. With some simple coding you could turn this into backprop + evolution.
The disadvantage of this is that it will require much more computation power as it requires a genetic algorithm to run an entire population. So using neuro-evolution does make the performance comparibly weak.
However, I think there are more techniques out there that disable certain nodes, and if there is no negative effect on the output, they will be removed. I'm not sure though.

What do I mutate and crossover in a genetic neural network?

I wrote a neural network and made a small application with things eating other things.
But I don't really know, how to make the thing genetic.
Currently I'm recording all the inputs and outputs from every individual every frame.
At the end of an generation, I then teach every knew individual the data from the top 10 best fitting individuals from prevous generations.
But the problem is, that the recorded data from a a pool of top 10 individuals at 100 generations, is about 50MB large. When I now start a new generation with 20 individuals I have to teach them 20x50MB.
This process takes longer than 3 minutes, and I am not sure if this is what I am supposed to do in genetic neural networks.
My approach works kind of good actually. Only the inefficiency bugs me. (Of course I know, I could just reduce the population.)
And I could't find me a solution to what I have to crossover and what to mutate.
Crossovering and mutating biases and weights is nonsense, isn't it? It only would break the network, would't it? I saw examples doing just this. Mutating the weight vector. But I just can't see, how this would make the network progress reaching it's desired outputs.
Can somebody show me how the network would become better at what it is doing by randomly switching and mutating weights and connections?
Would't it be the same, just randomly generating networks and hoping they start doing what they are supposed to do?
Are there other algorithms for genetic neural networks?
Thank you.
Typically, genetic algorithms for neural networks are used as an alternative to training with back-propagation. So there is no training phase (trying to combine various kinds of supervised training with evolution is an interesting idea, but isn't done commonly enough for there to be any standard methods that I know of).
In this context, crossover and mutation of weights and biases makes sense. It provides variation in the population. A lot of the resulting neural networks (especially early on) won't do much of anything interesting, but some will be better. As you keep selecting these better networks, you will continue to get better offspring. Eventually (assuming your task is reasonable and such) you'll have neural networks that are really good at what you want them to do. This is substantially better than random search, because evolution will explore the search space of potential neural networks in a much more intelligent manner.
So yes, just about any genetic neural network algorithm will involve mutating the weights, and perhaps crossing them over as well. Some, such as NEAT, also evolve the topology of the neural network and so allow mutations and crossovers that add or remove nodes and connections between nodes.

Neural Nets: computing weight deltas is a bottleneck

After profiling my Neural Nets' code I've realized that the method, which computes the weight changes for each arc in the network (-rate*gradient + momentum*previous_delta - decay*rate*weight), already given the gradient, is the bottleneck (55% inclusive samples).
Is there any trick to compute these values in a efficient manner?
This is normal behaviour. I am assuming that you are using an iterative process to solve the weights at each evolution step (such as backpropagation?). If the number of neurons is large and the training (back-testing) algorithm is short, then it is normal that weight mutation such as this will consume a larger fraction of compute time during training of the neural network.
Did you get this result using a simple XOR problem or similar? If so, you will probably find that if you start to solve more complex problems (such as pattern detection in multidimensional arrays, image processing, etc.) that those functions will begin to consume an insignificant fraction of compute time.
If you are profiling, I would suggest you profile with a problem that is closer to the purpose for which the neural network is designed (I am guessing you didn't design it to solve XOR or play tic tac toe) and you will probably find that optimising code such as -rate*gradient + momentum*previous_delta - decay*rate*weight is more or less a waste of time, at least this is my experience.
If you do find that this code is compute-intensive in real-world applications then I would suggest trying to reduce the number of times this line of code is executed via structural changes. Neural network optimization is a rich field and I can't possibly give you useful advise from such a broad question, but I will say that if your program is unusually slow, you're unlikely to see significant improvements by tinkering at such low-level code. I will however suggest the following from my own experience:
Consider parallelisation. Many search algorithms such as those implemented in back-propagation techniques are amenable to parallel attempts to improve convergence. As weight-adjustments are identical in terms of computation demand for a given network, think static loops in Open MP.
Modify the convergence criterion (the critical convergence rate before you stop adjustments of weights) to perform less of these calculations
Consider an alternative to deterministic solutions such as back-propagations, which are slightly more prone to local optimisation anyway. Consider gaussian mutation (All things being equal gaussian mutation will 1) reduce time spent on mutation relative to backtesting 2) increase convergence time and 3) be less prone to getting caught in local minima of the error search space)
Please note that this is a non-technical answer to what I have interpreted as a non-technical question.

Is there a rule/good advice on how big a artificial neural network should be?

My last lecture on ANN's was a while ago but I'm currently facing a project where I would want to use one.
So, the basics - like what type (a mutli-layer feedforward network), trained by an evolutionary algorithm (thats a given by the project), how many input-neurons (8) and how many ouput-neurons (7) - are set.
But I'm currently trying to figure out how many hidden layers I should use and how many neurons in each of these layers (the ea doesn't modify the network itself, but only the weights).
Is there a general rule or maybe a guideline on how to figure this out?
The best approach for this problem is to implement the cascade correlation algorithm, in which hidden nodes are sequentially added as necessary to reduce the error rate of the network. This has been demonstrated to be very useful in practice.
An alternative, of course, is a brute-force test of various values. I don't think simple answers such as "10 or 20 is good" are meaningful because you are directly addressing the separability of the data in high-dimensional space by the basis function.
A typical neural net relies on hidden layers in order to converge on a particular problem solution. A hidden layer of about 10 neurons is standard for networks with few input and output neurons. However, a trial an error approach often works best. Since the neural net will be trained by a genetic algorithm the number of hidden neurons may not play a significant role especially in training since its the weights and biases on the neurons which would be modified by an algorithm like back propogation.
As rcarter suggests, trial and error might do fine, but there's another thing you could try.
You could use genetic algorithms in order to determine the number of hidden layers or and the number of neurons in them.
I did similar things with a bunch of random forests, to try and find the best number of trees, branches, and parameters given to each tree, etc.