I am trying to figure out memory-efficient AND functional ways to process a large scale of data using strings in scala. I have read many things about lazy collections and have seen quite a bit of code examples. However, I run into "GC overhead exceeded" or "Java heap space" issues again and again.
Often the problem is that I try to construct a lazy collection, but evaluate each new element when I append it to the growing collection (I don't now any other way to do so incrementally). Of course, I could try something like initializing an initial lazy collection first and and yield the collection holding the desired values by applying the ressource-critical computations with map or so, but often I just simply do not know the exact size of the final collection a priori to initial that lazy collection.
Maybe you could help me by giving me hints or explanations on how to improve following code as an example, which splits a FASTA (definition below) formatted file into two separate files according to the rule that odd sequence pairs belong to one file and even ones to aother one ("separation of strands"). The "most" straight-forward way to do so would be in a imperative way by looping through the lines and printing into the corresponding files via open file streams (and this of course works excellent). However, I just don't enjoy the style of reassigning to variables holding header and sequences, thus the following example code uses (tail-)recursion, and I would appreciate to have found a way to maintain a similar design without running into ressource problems!
The example works perfectly for small files, but already with files at around ~500mb the code will fail with the standard JVM setups. I do want to process files of "arbitray" size, say 10-20gb or so.
val fileName = args(0)
val in = io.Source.fromFile(fileName) getLines
type itType = Iterator[String]
type sType = Stream[(String, String)]
def getFullSeqs(ite: itType) = {
//val metaChar = ">"
val HeadPatt = "(^>)(.+)" r
val SeqPatt = "([\\w\\W]+)" r
#annotation.tailrec
def rec(it: itType, out: sType = Stream[(String, String)]()): sType =
if (it hasNext) it next match {
case HeadPatt(_,header) =>
// introduce new header-sequence pair
rec(it, (header, "") #:: out)
case SeqPatt(seq) =>
val oldVal = out head
// concat subsequences
val newStream = (oldVal._1, oldVal._2 + seq) #:: out.tail
rec(it, newStream)
case _ =>
println("something went wrong my friend, oh oh oh!"); Stream[(String, String)]()
} else out
rec(ite)
}
def printStrands(seqs: sType) {
import java.io.PrintWriter
import java.io.File
def printStrand(seqse: sType, strand: Int) {
// only use sequences of one strand
val indices = List.tabulate(seqs.size/2)(_*2 + strand - 1).view
val p = new PrintWriter(new File(fileName + "." + strand))
indices foreach { i =>
p.print(">" + seqse(i)._1 + "\n" + seqse(i)._2 + "\n")
}; p.close
println("Done bro!")
}
List(1,2).par foreach (s => printStrand(seqs, s))
}
printStrands(getFullSeqs(in))
Three questions arise for me:
A) Let's assume one needs to maintain a large data structure obtained by processing the initial iterator you get from getLines like in my getFullSeqs method (note the different size of in and the output of getFullSeqs), because transformations on the whole(!) data is required repeatedly, because one does not know which part of the data one will require at any step. My example might not be the best, but how to do so? Is it possible at all??
B) What when the desired data structure is not inherently lazy, say one would like to store the (header -> sequence) pairs into a Map()? Would you wrap it in a lazy collection?
C) My implementation of constructing the stream might reverse the order of the inputted lines. When calling reverse, all elements will be evaluated (in my code, they already are, so this is the actual problem). Is there any way to post-process "from behind" in a lazy fashion? I know of reverseIterator, but is this already the solution, or will this not actually evaluate all elements first, too (as I would need to call it on a list)? One could construct the stream with newVal #:: rec(...), but I would lose tail-recursion then, wouldn't I?
So what I basically need is to add elements to a collection, which are not evaluated by the process of adding. So lazy val elem = "test"; elem :: lazyCollection is not what I am looking for.
EDIT: I have also tried using by-name parameter for the stream argument in rec .
Thank you so much for your attention and time, I really appreciate any help (again :) ).
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
FASTA is defined as a sequential set of sequences delimited by a single header line. A header is defined as a line starting with ">". Every line below the header is called part of the sequence associated with the header. A sequence ends when a new header is present. Every header is unique. Example:
>HEADER1
abcdefg
>HEADER2
hijklmn
opqrstu
>HEADER3
vwxyz
>HEADER4
zyxwv
Thus, sequence 2 is twice as big as seq 1. My program would split that file into a file A containing
>HEADER1
abcdefg
>HEADER3
vwxyz
and a second file B containing
>HEADER2
hijklmn
opqrstu
>HEADER4
zyxwv
The input file is assumed to consist of an even number of header-sequence pairs.
The key to working with really large data structures is to hold in memory only that which is critical to perform whatever operation you need. So, in your case, that's
Your input file
Your two output files
The current line of text
and that's it. In some cases you can need to store information such as how long a sequence is; in such events, you build the data structures in a first pass and use them on a second pass. Let's suppose, for example, that you decide that you want to write three files: one for even records, one for odd, and one for entries where the total length is less than 300 nucleotides. You would do something like this (warning--it compiles but I never ran it, so it may not actually work):
final def findSizes(
data: Iterator[String], sz: Map[String,Long] = Map(),
currentName: String = "", currentSize: Long = 0
): Map[String,Long] = {
def currentMap = if (currentName != "") sz + (currentName->currentSize) else sz
if (!data.hasNext) currentMap
else {
val s = data.next
if (s(0) == '>') findSizes(data, currentMap, s, 0)
else findSizes(data, sz, currentName, currentSize + s.length)
}
}
Then, for processing, you use that map and pass through again:
import java.io._
final def writeFiles(
source: Iterator[String], targets: Array[PrintWriter],
sizes: Map[String,Long], count: Int = -1, which: Int = 0
) {
if (!source.hasNext) targets.foreach(_.close)
else {
val s = source.next
if (s(0) == '>') {
val w = if (sizes.get(s).exists(_ < 300)) 2 else (count+1)%2
targets(w).println(s)
writeFiles(source, targets, sizes, count+1, w)
}
else {
targets(which).println(s)
writeFiles(source, targets, sizes, count, which)
}
}
}
You then use Source.fromFile(f).getLines() twice to create your iterators, and you're all set. Edit: in some sense this is the key step, because this is your "lazy" collection. However, it's not important just because it doesn't read all memory in immediately ("lazy"), but because it doesn't store any previous strings either!
More generally, Scala can't help you that much from thinking carefully about what information you need to have in memory and what you can fetch off disk as needed. Lazy evaluation can sometimes help, but there's no magic formula because you can easily express the requirement to have all your data in memory in a lazy way. Scala can't interpret your commands to access memory as, secretly, instructions to fetch stuff off the disk instead. (Well, not unless you write a library to cache results from disk which does exactly that.)
One could construct the stream with newVal #:: rec(...), but I would
lose tail-recursion then, wouldn't I?
Actually, no.
So, here's the thing... with your present tail recursion, you fill ALL of the Stream with values. Yes, Stream is lazy, but you are computing all of the elements, stripping it of any laziness.
Now say you do newVal #:: rec(...). Would you lose tail recursion? No. Why? Because you are not recursing. How come? Well, Stream is lazy, so it won't evaluate rec(...).
And that's the beauty of it. Once you do it that way, getFullSeqs returns on the first interaction, and only compute the "recursion" when printStrands asks for it. Unfortunately, that won't work as is...
The problem is that you are constantly modifying the Stream -- that's not how you use a Stream. With Stream, you always append to it. Don't keep "rewriting" the Stream.
Now, there are three other problems I could readily identify with printStrands. First, it calls size on seqs, which will cause the whole Stream to be processed, losing lazyness. Never call size on a Stream. Second, you call apply on seqse, accessing it by index. Never call apply on a Stream (or List) -- that's highly inefficient. It's O(n), which makes your inner loop O(n^2) -- yes, quadratic on the number of headers in the input file! Finally, printStrands keeps a reference to seqs throughout the execution of printStrand, preventing processing elements from being garbage collected.
So, here's a first approximation:
def inputStreams(fileName: String): (Stream[String], Stream[String]) = {
val in = (io.Source fromFile fileName).getLines.toStream
val SeqPatt = "^[^>]".r
def demultiplex(s: Stream[String], skip: Boolean): Stream[String] = {
if (s.isEmpty) Stream.empty
else if (skip) demultiplex(s.tail dropWhile (SeqPatt findFirstIn _ nonEmpty), skip = false)
else s.head #:: (s.tail takeWhile (SeqPatt findFirstIn _ nonEmpty)) #::: demultiplex(s.tail dropWhile (SeqPatt findFirstIn _ nonEmpty), skip = true)
}
(demultiplex(in, skip = false), demultiplex(in, skip = true))
}
The problem with the above, and I'm showing that code just to further guide in the issues of lazyness, is that the instant you do this:
val (a, b) = inputStreams(fileName)
You'll keep a reference to the head of both streams, which prevents garbage collecting them. You can't keep a reference to them, so you have to consume them as soon as you get them, without ever storing them in a "val" or "lazy val". A "var" might do, but it would be tricky to handle. So let's try this instead:
def inputStreams(fileName: String): Vector[Stream[String]] = {
val in = (io.Source fromFile fileName).getLines.toStream
val SeqPatt = "^[^>]".r
def demultiplex(s: Stream[String], skip: Boolean): Stream[String] = {
if (s.isEmpty) Stream.empty
else if (skip) demultiplex(s.tail dropWhile (SeqPatt findFirstIn _ nonEmpty), skip = false)
else s.head #:: (s.tail takeWhile (SeqPatt findFirstIn _ nonEmpty)) #::: demultiplex(s.tail dropWhile (SeqPatt findFirstIn _ nonEmpty), skip = true)
}
Vector(demultiplex(in, skip = false), demultiplex(in, skip = true))
}
inputStreams(fileName).zipWithIndex.par.foreach {
case (stream, strand) =>
val p = new PrintWriter(new File("FASTA" + "." + strand))
stream foreach p.println
p.close
}
That still doesn't work, because stream inside inputStreams works as a reference, keeping the whole stream in memory even while they are printed.
So, having failed again, what do I recommend? Keep it simple.
def in = (scala.io.Source fromFile fileName).getLines.toStream
def inputStream(in: Stream[String], strand: Int = 1): Stream[(String, Int)] = {
if (in.isEmpty) Stream.empty
else if (in.head startsWith ">") (in.head, 1 - strand) #:: inputStream(in.tail, 1 - strand)
else (in.head, strand) #:: inputStream(in.tail, strand)
}
val printers = Array.tabulate(2)(i => new PrintWriter(new File("FASTA" + "." + i)))
inputStream(in) foreach {
case (line, strand) => printers(strand) println line
}
printers foreach (_.close)
Now this won't keep anymore in memory than necessary. I still think it's too complex, however. This can be done more easily like this:
def in = (scala.io.Source fromFile fileName).getLines
val printers = Array.tabulate(2)(i => new PrintWriter(new File("FASTA" + "." + i)))
def printStrands(in: Iterator[String], strand: Int = 1) {
if (in.hasNext) {
val next = in.next
if (next startsWith ">") {
printers(1 - strand).println(next)
printStrands(in, 1 - strand)
} else {
printers(strand).println(next)
printStrands(in, strand)
}
}
}
printStrands(in)
printers foreach (_.close)
Or just use a while loop instead of recursion.
Now, to the other questions:
B) It might make sense to do so while reading it, so that you do not have to keep two copies of the data: the Map and a Seq.
C) Don't reverse a Stream -- you'll lose all of its laziness.
Related
I've 100+ million records stored in files with the following JSON structure (real data has way more columns, rows and is also nested)
{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}
The sqlContext.read.json function is unable to parse this since the records aren't on multiple lines but on one big line. The solution below solves this problem, but is a big performance killer. What would be the best way, performance wise, to handle this issue in Apache Spark?
val rdd = sc.wholeTextFiles("s3://some-bucket/**/*")
val validJSON = rdd.flatMap(_._2.replace("}{", "}\n{").split("\n"))
val df = sqlContext.read.json(validJSON)
df.count()
df.select("id").show()
This is a riff on Antot's answer, which should handle nested JSON
input.toVector
.foldLeft((false, Vector.empty[Char], Vector.empty[String])) {
case ((true, charAccum, strAccum), '{') => (false, Vector('{'), strAccum :+ charAccum.mkString);
case ((_, charAccum, strAccum), '}') => (true, charAccum :+ '}', strAccum);
case ((_, charAccum, strAccum), char) => (false, charAccum :+ char, strAccum)
}
._3
Basically what it does is split the data into a Vector[Char], and uses foldLeft to aggregate the input into substrings. The trick is to keep track of just enough information about the previous character to figure out if a { marks the start of a new object.
I used this input to test it (basically the OP's sample input, with a nested object thrown in):
val input = """{"id":"2-2-3","key":{ "test": "value"}}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}{"id":"2-2-3","key":"value"}"""
And got this result, which looks good:
Vector({"id":"2-2-3","key":{ "test": "value"}},
{"id":"2-2-3","key":"value"},
{"id":"2-2-3","key":"value"},
{"id":"2-2-3","key":"value"})
The problem with the original approach is the call _._2.replace("}{", "}\n{", which creates another huge string from the input one, with new line chars inserted, which is then split once again into an array.
An improvement is possible by minimizing the creation of intermediate strings and retrieving the target ones as soon as possible. For this, we can play a bit with substrings:
val validJson = rdd.flatMap(rawJson => {
// functions extracted to make it more readable.
def nextObjectStartIndex(fromIndex: Int):Int = rawJson._2.indexOf('{', fromIndex)
def currObjectEndIndex(fromIndex: Int): Int = rawJson._2.indexOf('}', fromIndex)
def extractObject(fromIndex: Int, toIndex: Int): String = rawJson._2.substring(fromIndex, toIndex + 1)
// the resulting strings are put in a local buffer
val buffer = new ListBuffer[String]()
// init the scanning of the input string
var posStartNextObject = nextObjectStartIndex(0)
// main loop terminates when there are no more '{' chars
while (posStartNextObject != -1) {
val posEndObject = currObjectEndIndex(posStartNextObject)
val extractedObject = extractObject(posStartNextObject, posEndObject)
posStartNextObject = nextObjectStartIndex(posEndObject)
buffer += extractedObject
}
buffer
})
Please note that this approach would work only if the objects in the input JSON are not nested, supposing that all curly braces separate objects of same level.
I am new to scala and you like to understand why the following code results
in a GC overhead limit exceeded and what should be done to avoid it.
import scala.io.Source
import scala.annotation.tailrec
def getItems(file: Source): Stream[String] = {
#tailrec
def acc(it: Iterator[String],
item: String,
items: Stream[String]): Stream[String] = {
if(it.hasNext){
val line = it.next
line take 1 match {
case " " =>
acc(it, item + "\n" + line, items)
case "1" =>
acc(it, item, Stream.cons(item, items))
}
}
else {
Stream.cons(item, items)
}
}
acc(file.getLines(), "", Stream.Empty)
}
There are two reasons of you code maybe will cause OOM:
item will recursively add with the file length, this maybe will very large depend on your file size.
For your Stream is repeatedly appending the accumlated item to Stream, this also maybe will very large,that cause OOM.
There is a way maybe can save this scenario by using lazy evaluation and Stream without memorization.
I am trying to figure out what you are actually trying to do but the problem is that you are recursing with your acc function until your input file has not more elements. Here is a very simple example that converts your iterator into a stream.
def convert[T]( iter : Iterator[T] ) : Stream[T] =
if ( iter.hasNext ) {
Stream.cons( iter.next, convert( iter ) )
} else {
Stream.empty
}
In addition you are appending all lines that start with a space to item. I don't know how many such lines you have in your input but if all lines would be starting with space, you would use (n^2)/2 characters if your input file has n characters. But I don't think that's why your recursion fails.
Stream in scala is a leaky abstraction actually. It pretends to be a Seq but you can't use it as a regular collection if a stream is huge.
Here is an article about streams http://blog.dmitryleskov.com/programming/scala/stream-hygiene-i-avoiding-memory-leaks/
In your case the rule 'don't store Streams in method arguments' is violated (items).
I have used Iterators after have worked with Regexes in Scala but I don't really understand the interest.
I know that it has a state and if I call the next() method on it, it will output a different result every time, but I don't see anything I can do with it and that is not possible with an Iterable.
And it doesn't seem to work as Akka Streams (for example) since the following example directly prints all the numbers (without waiting one second as I would expect it):
lazy val a = Iterator({Thread.sleep(1000); 1}, {Thread.sleep(1000); 2}, {Thread.sleep(1000); 3})
while(a.hasNext){ println(a.next()) }
So what is the purpose of using Iterators?
Perhaps, the most useful property of iterators is that they are lazy.
Consider something like this:
(1 to 10000)
.map { x => x * x }
.map { _.toString }
.find { _ == "4" }
This snippet will square 10000 numbers, then generate 10000 strings, and then return the second one.
This on the other hand:
(1 to 10000)
.iterator
.map { x => x * x }
.map { _.toString }
.find { _ == "4" }
... only computes two squares, and generates two strings.
Iterators are also often useful when you need to wrap around some poorly designed (java?) objects in order to be able to handle them in functional style:
val rs: ResultSet = jdbcQuery.executeQuery()
new Iterator {
def next = rs
def hasNext = rs.next
}.map { rs =>
fetchData(rs)
}
Streams are similar to iterators - they are also lazy, and also useful for wrapping:
Stream.continually(rs).takeWhile { _.next }.map(fetchData)
The main difference though is that streams remember the data that gets materialized, so that you can traverse them more than once. This is convenient, but may be costly if the original amount of data is very large, especially, if it gets filtered down to much smaller size:
Source
.fromFile("huge_file.txt")
.getLines
.filter(_ == "")
.toList
This only uses, roughly (ignoring buffering, object overhead, and other implementation specific details), the amount of memory, necessary to keep one line in memory, plus however many empty lines there are in the file.
This on the other hand:
val reader = new FileReader("huge_file.txt")
Stream
.continually(reader.readLine)
.takeWhile(_ != null)
.filter(_ == "")
.toList
... will end up with the entire content of the huge_file.txt in memory.
Finally, if I understand the intent of your example correctly, here is how you could do it with iterators:
val iterator = Seq(1,2,3).iterator.map { n => Thread.sleep(1000); n }
iterator.foreach(println)
// Or while(iterator.hasNext) { println(iterator.next) } as you had it.
There is a good explanation of what iterator is http://www.scala-lang.org/docu/files/collections-api/collections_43.html
An iterator is not a collection, but rather a way to access the
elements of a collection one by one. The two basic operations on an
iterator it are next and hasNext. A call to it.next() will return the
next element of the iterator and advance the state of the iterator.
Calling next again on the same iterator will then yield the element
one beyond the one returned previously. If there are no more elements
to return, a call to next will throw a NoSuchElementException.
First of all you should understand what is wrong with your example:
lazy val a = Iterator({Thread.sleep(1); 1}, {Thread.sleep(1); 2},
{Thread.sleep(2); 3}) while(a.hasNext){ println(a.next()) }
if you look at the apply method of Iterator, you'll see there are no calls by name,so all Thread.sleep are calling at the same time when apply method calls. Also Thread.sleep takes parameter of time to sleep in milliseconds, so if you want to sleep your thread on one second you should pass Thread.sleep(1000).
The companion object has additional methods which allow you do the next:
val a = Iterator.iterate(1)(x => {Thread.sleep(1000); x+1})
Iterator is very useful when you need to work with large data. Also you can implement your own:
val it = new Iterator[Int] {
var i = -1
def hasNext = true
def next(): Int = { i += 1; i }
}
I don't see anything I can do with it and that is not possible with an Iterable
In fact, what most collection can do can also be done with Array, but we don't do that because it's much less convenient
So same reason apply to iterator, if you want to model a mutable state, then iterator makes more sense.
For example, Random is implemented in a way resemble to iterator because it's use case fit more naturally in iterator, rather than iterable.
I am trying to modify a large PostScript file in Scala (some are as large as 1GB in size). The file is a group of batches, with each batch containing a code that represents the batch number, number of pages, etc.
I need to:
Search the file for the batch codes (which always start with the same line in the file)
Count the number of pages until the next batch code
Modify the batch code to include how many pages are in each batch.
Save the new file in a different location.
My current solution uses two iterators (iterA and iterB), created from Source.fromFile("file.ps").getLines. The first iterator (iterA) traverses in a while loop to the beginning of a batch code (with iterB.next being called each time as well). iterB then continues searching until the next batch code (or the end of the file), counting the number of pages it passes as it goes. Then, it updates the batch code at iterA's position, an the process repeats.
This seems very non-Scala-like and I still haven't designed a good way to save these changes into a new file.
What is a good approach to this problem? Should I ditch iterators entirely? I'd preferably like to do it without having to have the entire input or output into memory at once.
Thanks!
You could probably implement this with Scala's Stream class. I am assuming that you don't mind
holding one "batch" in memory at a time.
import scala.annotation.tailrec
import scala.io._
def isBatchLine(line:String):Boolean = ...
def batchLine(size: Int):String = ...
val it = Source.fromFile("in.ps").getLines
// cannot use it.toStream here because of SI-4835
def inLines = Stream.continually(i).takeWhile(_.hasNext).map(_.next)
// Note: using `def` instead of `val` here means we don't hold
// the entire stream in memory
def batchedLinesFrom(stream: Stream[String]):Stream[String] = {
val (batch, remainder) = stream span { !isBatchLine(_) }
if (batch.isEmpty && remainder.isEmpty) {
Stream.empty
} else {
batchLine(batch.size) #:: batch #::: batchedLinesFrom(remainder.drop(1))
}
}
def newLines = batchedLinesFrom(inLines dropWhile isBatchLine)
val ps = new java.io.PrintStream(new java.io.File("out.ps"))
newLines foreach ps.println
ps.close()
If you not in pursuit of functional scala enlightenment, I'd recommend a more imperative style using java.util.Scanner#findWithinHorizon. My example is quite naive, iterating through the input twice.
val scanner = new Scanner(inFile)
val writer = new BufferedWriter(...)
def loop() = {
// you might want to limit the horizon to prevent OutOfMemoryError
Option(scanner.findWithinHorizon(".*YOUR-BATCH-MARKER", 0)) match {
case Some(batch) =>
val pageCount = countPages(batch)
writePageCount(writer, pageCount)
writer.write(batch)
loop()
case None =>
}
}
loop()
scanner.close()
writer.close()
May be you can use span and duplicate effectively. Assuming the iterator is positioned on the start of a batch, you take the span before the next batch, duplicate it so that you can count the pages, write the modified batch line, then write the pages using the duplicated iterator. Then process next batch recursively...
def batch(i: Iterator[String]) {
if (i.hasNext) {
assert(i.next() == "batch")
val (current, next) = i.span(_ != "batch")
val (forCounting, forWriting) = current.duplicate
val count = forCounting.filter(_ == "p").size
println("batch " + count)
forWriting.foreach(println)
batch(next)
}
}
Assuming the following input:
val src = Source.fromString("head\nbatch\np\np\nbatch\np\nbatch\np\np\np\n")
You position the iterator at the start of batch and then you process the batches:
val (head, next) = src.getLines.span(_ != "batch")
head.foreach(println)
batch(next)
This prints:
head
batch 2
p
p
batch 1
p
batch 3
p
p
p
For example suppose I have
for (line <- myData) {
println("}, {")
}
Is there a way to get the last line to print
println("}")
Can you refactor your code to take advantage of built-in mkString?
scala> List(1, 2, 3).mkString("{", "}, {", "}")
res1: String = {1}, {2}, {3}
Before going any further, I'd recommend you avoid println in a for-comprehension. It can sometimes be useful for tracking down a bug that occurs in the middle of a collection, but otherwise leads to code that's harder to refactor and test.
More generally, life usually becomes easier if you can restrict where any sort of side-effect occurs. So instead of:
for (line <- myData) {
println("}, {")
}
You can write:
val lines = for (line <- myData) yield "}, {"
println(lines mkString "\n")
I'm also going to take a guess here that you wanted the content of each line in the output!
val lines = for (line <- myData) yield (line + "}, {")
println(lines mkString "\n")
Though you'd be better off still if you just used mkString directly - that's what it's for!
val lines = myData.mkString("{", "\n}, {", "}")
println(lines)
Note how we're first producing a String, then printing it in a single operation. This approach can easily be split into separate methods and used to implement toString on your class, or to inspect the generated String in tests.
I agree fully with what has been said before about using mkstring, and distinguishing the first iteration rather than the last one. Would you still need to distinguish on the last, scala collections have an init method, which return all elements but the last.
So you can do
for(x <- coll.init) workOnNonLast(x)
workOnLast(coll.last)
(init and last being sort of the opposite of head and tail, which are the first and and all but first). Note however than depending on the structure, they may be costly. On Vector, all of them are fast. On List, while head and tail are basically free, init and last are both linear in the length of the list. headOption and lastOption may help you when the collection may be empty, replacing workOnlast by
for (x <- coll.lastOption) workOnLast(x)
You may take the addString function of the TraversableOncetrait as an example.
def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder = {
var first = true
b append start
for (x <- self) {
if (first) {
b append x
first = false
} else {
b append sep
b append x
}
}
b append end
b
}
In your case, the separator is }, { and the end is }
If you don't want to use built-in mkString function, you can make something like
for (line <- lines)
if (line == lines.last) println("last")
else println(line)
UPDATE: As didierd mentioned in comments, this solution is wrong because last value can occurs several times, he provides better solution in his answer.
It is fine for Vectors, because last function takes "effectively constant time" for them, as for Lists, it takes linear time, so you can use pattern matching
#tailrec
def printLines[A](l: List[A]) {
l match {
case Nil =>
case x :: Nil => println("last")
case x :: xs => println(x); printLines(xs)
}
}
Other answers are rightfully pointed to mkString, and for a normal amount of data I would also use that.
However, mkString builds (accumulates) the end-result in-memory through a StringBuilder. This is not always desirable, depending on the amount of data we have.
In this case, if all we want is to "print" we don't need to build the big-result first (and maybe we even want to avoid this).
Consider the implementation of this helper function:
def forEachIsLast[A](iterator: Iterator[A])(operation: (A, Boolean) => Unit): Unit = {
while(iterator.hasNext) {
val element = iterator.next()
val isLast = !iterator.hasNext // if there is no "next", this is the last one
operation(element, isLast)
}
}
It iterates over all elements and invokes operation passing each element in turn, with a boolean value. The value is true if the element passed is the last one.
In your case it could be used like this:
forEachIsLast(myData) { (line, isLast) =>
if(isLast)
println("}")
else
println("}, {")
}
We have the following advantages here:
It operates on each element, one by one, without necessarily accumulating the result in memory (unless you want to).
Because it does not need to load the whole collection into memory to check its size, it's enough to ask the Iterator if it's exhausted or not. You could read data from a big file, or from the network, etc.