I have a use case in my program where I need to take a file, split them equally N times and upload them remotely.
I'd like a function that takes, say a File and output a list of BufferedReader. To which I can just distribute them and send them to another function which uses some API to store them.
I've seen examples where authors utilize the .lines() method of a BufferedReader:
def splitFile: List[Stream] = {
val temp = "Test mocked file contents\nTest"
val is = new ByteArrayInputStream(lolz.getBytes)
val br = new BufferedReader(new InputStreamReader(is))
// Chunk the file into two sort-of equal parts.
// Stream 1
val test = br.lines().skip(1).limit(1)
// Stream 2
val test2 = br.lines().skip(2).limit(1)
List(test, test2)
}
I suppose that the above example works, it's not beautiful but it works.
My questions:
Is there a way to split a BufferedReader into multiple list of streams?
I don't control the format of the File, so the file contents could potentially be a single line long. Wouldn't that just mean that .lines() just load all that into a Stream of one element?
It will be much easier to read the file once, and then split it up. You're not really losing anything either, since the file read is a serial operation anyway. From there, just devise a scheme to slice up the list. In this case, I group everything based on its index modulo the number of desired output lists, then pull out the lists. If there are fewer lines than you ask for, it will just place each line in a separate List.
val lines: List[String] = br.lines
val outputListQuantity: Int = 2
val data: List[List[String]] = lines.zipWithIndex.groupBy(_._2 % outputListQuantity}.
values.map(_.map(_._1)).toList
Well, if you don't mind reading the whole stream into memory, it's easy enough (assuming, that file contains text - since you are talking about Readers, but it would be the same idea with binary):
Source.fromFile("filename")
.mkString
.getBytes
.grouped(chunkSize)
.map { chunk => new BufferedReader(new InputStreamReader(chunk)) }
But that seems to sorta defeat the purpose: if the file is small enough to be loaded into memory entirely, why bother splitting it to begin with?
So, a more practical solution is a little bit more involved:
def splitFile(
input: InputStream,
chunkSize: Int
): Iterator[InputStream] = new AbstractIterator[InputStream] {
var hasNext = true
def next = {
val buffer = new Array[Byte](chunkSize)
val bytes = input.read(buffer)
hasNext = bytes == chunkSize
new ByteArrayInputStream(buffer, 0, bytes max 0)
}
}
I am new to scala and you like to understand why the following code results
in a GC overhead limit exceeded and what should be done to avoid it.
import scala.io.Source
import scala.annotation.tailrec
def getItems(file: Source): Stream[String] = {
#tailrec
def acc(it: Iterator[String],
item: String,
items: Stream[String]): Stream[String] = {
if(it.hasNext){
val line = it.next
line take 1 match {
case " " =>
acc(it, item + "\n" + line, items)
case "1" =>
acc(it, item, Stream.cons(item, items))
}
}
else {
Stream.cons(item, items)
}
}
acc(file.getLines(), "", Stream.Empty)
}
There are two reasons of you code maybe will cause OOM:
item will recursively add with the file length, this maybe will very large depend on your file size.
For your Stream is repeatedly appending the accumlated item to Stream, this also maybe will very large,that cause OOM.
There is a way maybe can save this scenario by using lazy evaluation and Stream without memorization.
I am trying to figure out what you are actually trying to do but the problem is that you are recursing with your acc function until your input file has not more elements. Here is a very simple example that converts your iterator into a stream.
def convert[T]( iter : Iterator[T] ) : Stream[T] =
if ( iter.hasNext ) {
Stream.cons( iter.next, convert( iter ) )
} else {
Stream.empty
}
In addition you are appending all lines that start with a space to item. I don't know how many such lines you have in your input but if all lines would be starting with space, you would use (n^2)/2 characters if your input file has n characters. But I don't think that's why your recursion fails.
Stream in scala is a leaky abstraction actually. It pretends to be a Seq but you can't use it as a regular collection if a stream is huge.
Here is an article about streams http://blog.dmitryleskov.com/programming/scala/stream-hygiene-i-avoiding-memory-leaks/
In your case the rule 'don't store Streams in method arguments' is violated (items).
I have a file processing job that currently uses akka actors with manually managed backpressure to handle the processing pipeline, but I've never been able to successfully manage the backpressure at the input file reading stage.
This job takes an input file and groups lines by an ID number present at the start of each line, and then once it hits a line with a new ID number, it pushes the grouped lines to a processing actor via message, and then continues with the new ID number, all the way until it reaches the end of the file.
This seems like it would be a good use case for Akka Streams, using the File as a sink, but I'm still not sure of three things:
1) How can I read the file line by line?
2) How can I group by the ID present on every line? I currently use very imperative processing for this, and I don't think I'll have the same ability in a stream pipeline.
3) How can I apply backpressure, such that I don't keep reading lines into memory faster than I can process the data downstream?
Akka streams' groupBy is one approach. But groupBy has a maxSubstreams param which would require that you to know that max # of ID ranges up front. So: the solution below uses scan to identify same-ID blocks, and splitWhen to split into substreams:
object Main extends App {
implicit val system = ActorSystem("system")
implicit val materializer = ActorMaterializer()
def extractId(s: String) = {
val a = s.split(",")
a(0) -> a(1)
}
val file = new File("/tmp/example.csv")
private val lineByLineSource = FileIO.fromFile(file)
.via(Framing.delimiter(ByteString("\n"), maximumFrameLength = 1024))
.map(_.utf8String)
val future: Future[Done] = lineByLineSource
.map(extractId)
.scan( (false,"","") )( (l,r) => (l._2 != r._1, r._1, r._2) )
.drop(1)
.splitWhen(_._1)
.fold( ("",Seq[String]()) )( (l,r) => (r._2, l._2 ++ Seq(r._3) ))
.concatSubstreams
.runForeach(println)
private val reply = Await.result(future, 10 seconds)
println(s"Received $reply")
Await.ready(system.terminate(), 10 seconds)
}
extractId splits lines into id -> data tuples. scan prepends id -> data tuples with a start-of-ID-range flag. The drop drops the primer element to scan. splitwhen starts a new substream for each start-of-range. fold concatenates substreams to lists and removes the start-of-ID-range boolean, so that each substream produces a single element. In place of the fold you probably want a custom SubFlow which processes a streams of rows for a single ID and emits some result for the ID range. concatSubstreams merges the per-ID-range substreams produced by splitWhen back into a single stream that's printed by runForEach .
Run with:
$ cat /tmp/example.csv
ID1,some input
ID1,some more input
ID1,last of ID1
ID2,one line of ID2
ID3,2nd before eof
ID3,eof
Output is:
(ID1,List(some input, some more input, last of ID1))
(ID2,List(one line of ID2))
(ID3,List(2nd before eof, eof))
It appears that the easiest way to add "back pressure" to your system without introducing huge modifications is to simply change the mailbox type of the input groups consuming Actor to BoundedMailbox.
Change the type of the Actor that consumes your lines to BoundedMailbox with high mailbox-push-timeout-time:
bounded-mailbox {
mailbox-type = "akka.dispatch.BoundedDequeBasedMailbox"
mailbox-capacity = 1
mailbox-push-timeout-time = 1h
}
val actor = system.actorOf(Props(classOf[InputGroupsConsumingActor]).withMailbox("bounded-mailbox"))
Create iterator from your file, create grouped (by id) iterator from that iterator. Then just cycle through the data, sending groups to consuming Actor. Note, that send will block in this case, when Actor's mailbox gets full.
def iterGroupBy[A, K](iter: Iterator[A])(keyFun: A => K): Iterator[Seq[A]] = {
def rec(s: Stream[A]): Stream[Seq[A]] =
if (s.isEmpty) Stream.empty else {
s.span(keyFun(s.head) == keyFun(_)) match {
case (prefix, suffix) => prefix.toList #:: rec(suffix)
}
}
rec(iter.toStream).toIterator
}
val lines = Source.fromFile("input.file").getLines()
iterGroupBy(lines){l => l.headOption}.foreach {
lines:Seq[String] =>
actor.tell(lines, ActorRef.noSender)
}
That's it!
You probably want to move file reading stuff to separate thread, as it's gonna block. Also by adjusting mailbox-capacity you can regulate amount of consumed memory. But if reading batch from the file is always faster than processing, it seems reasonable to keep capacity small, like 1 or 2.
upd iterGroupBy implemented with Stream, tested not to produce StackOverflow.
The following code will read a file line by line, create a task for each line and then queue it up to the executor. If the executor's queue is full, the reading from the file stops until there is space again.
I looked at a few suggestions in SO, but they all either require the entire content of the file be read into memory, or suboptimal scheduling (e.g. read 100 lines, process them in parallel, only after that finishes, read the next 100 lines). I also don't want to use libraries like Akka for this.
What is the Scala way of achieving this, without those drawbacks?
val exec = executorWithBoundedQueue()
val lines = Source.fromFile(sourceFile, cs).getLines()
lines.map {
l => exec.submit(new Callable[String] {
override def call(): String = doStuff(l)
})
}.foreach {
s => consume(s.get())
}
exec.shutdown()
Illustrative definition of executorWithBoundedQueue
def executorWithBoundedQueue(): ExecutorService = {
val boundedQueue = new LinkedBlockingQueue[Runnable](1000)
new ThreadPoolExecutor(boundedQueue)
}
I am trying to figure out memory-efficient AND functional ways to process a large scale of data using strings in scala. I have read many things about lazy collections and have seen quite a bit of code examples. However, I run into "GC overhead exceeded" or "Java heap space" issues again and again.
Often the problem is that I try to construct a lazy collection, but evaluate each new element when I append it to the growing collection (I don't now any other way to do so incrementally). Of course, I could try something like initializing an initial lazy collection first and and yield the collection holding the desired values by applying the ressource-critical computations with map or so, but often I just simply do not know the exact size of the final collection a priori to initial that lazy collection.
Maybe you could help me by giving me hints or explanations on how to improve following code as an example, which splits a FASTA (definition below) formatted file into two separate files according to the rule that odd sequence pairs belong to one file and even ones to aother one ("separation of strands"). The "most" straight-forward way to do so would be in a imperative way by looping through the lines and printing into the corresponding files via open file streams (and this of course works excellent). However, I just don't enjoy the style of reassigning to variables holding header and sequences, thus the following example code uses (tail-)recursion, and I would appreciate to have found a way to maintain a similar design without running into ressource problems!
The example works perfectly for small files, but already with files at around ~500mb the code will fail with the standard JVM setups. I do want to process files of "arbitray" size, say 10-20gb or so.
val fileName = args(0)
val in = io.Source.fromFile(fileName) getLines
type itType = Iterator[String]
type sType = Stream[(String, String)]
def getFullSeqs(ite: itType) = {
//val metaChar = ">"
val HeadPatt = "(^>)(.+)" r
val SeqPatt = "([\\w\\W]+)" r
#annotation.tailrec
def rec(it: itType, out: sType = Stream[(String, String)]()): sType =
if (it hasNext) it next match {
case HeadPatt(_,header) =>
// introduce new header-sequence pair
rec(it, (header, "") #:: out)
case SeqPatt(seq) =>
val oldVal = out head
// concat subsequences
val newStream = (oldVal._1, oldVal._2 + seq) #:: out.tail
rec(it, newStream)
case _ =>
println("something went wrong my friend, oh oh oh!"); Stream[(String, String)]()
} else out
rec(ite)
}
def printStrands(seqs: sType) {
import java.io.PrintWriter
import java.io.File
def printStrand(seqse: sType, strand: Int) {
// only use sequences of one strand
val indices = List.tabulate(seqs.size/2)(_*2 + strand - 1).view
val p = new PrintWriter(new File(fileName + "." + strand))
indices foreach { i =>
p.print(">" + seqse(i)._1 + "\n" + seqse(i)._2 + "\n")
}; p.close
println("Done bro!")
}
List(1,2).par foreach (s => printStrand(seqs, s))
}
printStrands(getFullSeqs(in))
Three questions arise for me:
A) Let's assume one needs to maintain a large data structure obtained by processing the initial iterator you get from getLines like in my getFullSeqs method (note the different size of in and the output of getFullSeqs), because transformations on the whole(!) data is required repeatedly, because one does not know which part of the data one will require at any step. My example might not be the best, but how to do so? Is it possible at all??
B) What when the desired data structure is not inherently lazy, say one would like to store the (header -> sequence) pairs into a Map()? Would you wrap it in a lazy collection?
C) My implementation of constructing the stream might reverse the order of the inputted lines. When calling reverse, all elements will be evaluated (in my code, they already are, so this is the actual problem). Is there any way to post-process "from behind" in a lazy fashion? I know of reverseIterator, but is this already the solution, or will this not actually evaluate all elements first, too (as I would need to call it on a list)? One could construct the stream with newVal #:: rec(...), but I would lose tail-recursion then, wouldn't I?
So what I basically need is to add elements to a collection, which are not evaluated by the process of adding. So lazy val elem = "test"; elem :: lazyCollection is not what I am looking for.
EDIT: I have also tried using by-name parameter for the stream argument in rec .
Thank you so much for your attention and time, I really appreciate any help (again :) ).
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
FASTA is defined as a sequential set of sequences delimited by a single header line. A header is defined as a line starting with ">". Every line below the header is called part of the sequence associated with the header. A sequence ends when a new header is present. Every header is unique. Example:
>HEADER1
abcdefg
>HEADER2
hijklmn
opqrstu
>HEADER3
vwxyz
>HEADER4
zyxwv
Thus, sequence 2 is twice as big as seq 1. My program would split that file into a file A containing
>HEADER1
abcdefg
>HEADER3
vwxyz
and a second file B containing
>HEADER2
hijklmn
opqrstu
>HEADER4
zyxwv
The input file is assumed to consist of an even number of header-sequence pairs.
The key to working with really large data structures is to hold in memory only that which is critical to perform whatever operation you need. So, in your case, that's
Your input file
Your two output files
The current line of text
and that's it. In some cases you can need to store information such as how long a sequence is; in such events, you build the data structures in a first pass and use them on a second pass. Let's suppose, for example, that you decide that you want to write three files: one for even records, one for odd, and one for entries where the total length is less than 300 nucleotides. You would do something like this (warning--it compiles but I never ran it, so it may not actually work):
final def findSizes(
data: Iterator[String], sz: Map[String,Long] = Map(),
currentName: String = "", currentSize: Long = 0
): Map[String,Long] = {
def currentMap = if (currentName != "") sz + (currentName->currentSize) else sz
if (!data.hasNext) currentMap
else {
val s = data.next
if (s(0) == '>') findSizes(data, currentMap, s, 0)
else findSizes(data, sz, currentName, currentSize + s.length)
}
}
Then, for processing, you use that map and pass through again:
import java.io._
final def writeFiles(
source: Iterator[String], targets: Array[PrintWriter],
sizes: Map[String,Long], count: Int = -1, which: Int = 0
) {
if (!source.hasNext) targets.foreach(_.close)
else {
val s = source.next
if (s(0) == '>') {
val w = if (sizes.get(s).exists(_ < 300)) 2 else (count+1)%2
targets(w).println(s)
writeFiles(source, targets, sizes, count+1, w)
}
else {
targets(which).println(s)
writeFiles(source, targets, sizes, count, which)
}
}
}
You then use Source.fromFile(f).getLines() twice to create your iterators, and you're all set. Edit: in some sense this is the key step, because this is your "lazy" collection. However, it's not important just because it doesn't read all memory in immediately ("lazy"), but because it doesn't store any previous strings either!
More generally, Scala can't help you that much from thinking carefully about what information you need to have in memory and what you can fetch off disk as needed. Lazy evaluation can sometimes help, but there's no magic formula because you can easily express the requirement to have all your data in memory in a lazy way. Scala can't interpret your commands to access memory as, secretly, instructions to fetch stuff off the disk instead. (Well, not unless you write a library to cache results from disk which does exactly that.)
One could construct the stream with newVal #:: rec(...), but I would
lose tail-recursion then, wouldn't I?
Actually, no.
So, here's the thing... with your present tail recursion, you fill ALL of the Stream with values. Yes, Stream is lazy, but you are computing all of the elements, stripping it of any laziness.
Now say you do newVal #:: rec(...). Would you lose tail recursion? No. Why? Because you are not recursing. How come? Well, Stream is lazy, so it won't evaluate rec(...).
And that's the beauty of it. Once you do it that way, getFullSeqs returns on the first interaction, and only compute the "recursion" when printStrands asks for it. Unfortunately, that won't work as is...
The problem is that you are constantly modifying the Stream -- that's not how you use a Stream. With Stream, you always append to it. Don't keep "rewriting" the Stream.
Now, there are three other problems I could readily identify with printStrands. First, it calls size on seqs, which will cause the whole Stream to be processed, losing lazyness. Never call size on a Stream. Second, you call apply on seqse, accessing it by index. Never call apply on a Stream (or List) -- that's highly inefficient. It's O(n), which makes your inner loop O(n^2) -- yes, quadratic on the number of headers in the input file! Finally, printStrands keeps a reference to seqs throughout the execution of printStrand, preventing processing elements from being garbage collected.
So, here's a first approximation:
def inputStreams(fileName: String): (Stream[String], Stream[String]) = {
val in = (io.Source fromFile fileName).getLines.toStream
val SeqPatt = "^[^>]".r
def demultiplex(s: Stream[String], skip: Boolean): Stream[String] = {
if (s.isEmpty) Stream.empty
else if (skip) demultiplex(s.tail dropWhile (SeqPatt findFirstIn _ nonEmpty), skip = false)
else s.head #:: (s.tail takeWhile (SeqPatt findFirstIn _ nonEmpty)) #::: demultiplex(s.tail dropWhile (SeqPatt findFirstIn _ nonEmpty), skip = true)
}
(demultiplex(in, skip = false), demultiplex(in, skip = true))
}
The problem with the above, and I'm showing that code just to further guide in the issues of lazyness, is that the instant you do this:
val (a, b) = inputStreams(fileName)
You'll keep a reference to the head of both streams, which prevents garbage collecting them. You can't keep a reference to them, so you have to consume them as soon as you get them, without ever storing them in a "val" or "lazy val". A "var" might do, but it would be tricky to handle. So let's try this instead:
def inputStreams(fileName: String): Vector[Stream[String]] = {
val in = (io.Source fromFile fileName).getLines.toStream
val SeqPatt = "^[^>]".r
def demultiplex(s: Stream[String], skip: Boolean): Stream[String] = {
if (s.isEmpty) Stream.empty
else if (skip) demultiplex(s.tail dropWhile (SeqPatt findFirstIn _ nonEmpty), skip = false)
else s.head #:: (s.tail takeWhile (SeqPatt findFirstIn _ nonEmpty)) #::: demultiplex(s.tail dropWhile (SeqPatt findFirstIn _ nonEmpty), skip = true)
}
Vector(demultiplex(in, skip = false), demultiplex(in, skip = true))
}
inputStreams(fileName).zipWithIndex.par.foreach {
case (stream, strand) =>
val p = new PrintWriter(new File("FASTA" + "." + strand))
stream foreach p.println
p.close
}
That still doesn't work, because stream inside inputStreams works as a reference, keeping the whole stream in memory even while they are printed.
So, having failed again, what do I recommend? Keep it simple.
def in = (scala.io.Source fromFile fileName).getLines.toStream
def inputStream(in: Stream[String], strand: Int = 1): Stream[(String, Int)] = {
if (in.isEmpty) Stream.empty
else if (in.head startsWith ">") (in.head, 1 - strand) #:: inputStream(in.tail, 1 - strand)
else (in.head, strand) #:: inputStream(in.tail, strand)
}
val printers = Array.tabulate(2)(i => new PrintWriter(new File("FASTA" + "." + i)))
inputStream(in) foreach {
case (line, strand) => printers(strand) println line
}
printers foreach (_.close)
Now this won't keep anymore in memory than necessary. I still think it's too complex, however. This can be done more easily like this:
def in = (scala.io.Source fromFile fileName).getLines
val printers = Array.tabulate(2)(i => new PrintWriter(new File("FASTA" + "." + i)))
def printStrands(in: Iterator[String], strand: Int = 1) {
if (in.hasNext) {
val next = in.next
if (next startsWith ">") {
printers(1 - strand).println(next)
printStrands(in, 1 - strand)
} else {
printers(strand).println(next)
printStrands(in, strand)
}
}
}
printStrands(in)
printers foreach (_.close)
Or just use a while loop instead of recursion.
Now, to the other questions:
B) It might make sense to do so while reading it, so that you do not have to keep two copies of the data: the Map and a Seq.
C) Don't reverse a Stream -- you'll lose all of its laziness.