Matlab Neural Network correctly classified results - matlab

I have trained a NN with Back Propagation algorithm and calculated the MSE. Now I want to find the percentage of correctly classified results (i am facing a classification problem). Any help?

It depends on your dataset whether you generate the data or whether you are given a dataset with samples.
In the first case you feed your NN with a generated sample and check whether NN predicts the correct class. You repeat it let say 100 times. And for each correctly classified sample you increment the counter CorrectlyClassified by one. Then the percentage of correctly classified results is equal to CorrectlyClassified. For higher accuracy you may not generate 100 samples, but X samples (where X is bigger than 100). Then the percentage of correctly classified results is:
CorrectlyClassified/X*100.
If you are given a dataset you should use cross-validation. See MATLAB documentation for an example.

Related

Multiclass classification or regression?

I am trying to train a CNN model to classify images based on their aesthetic score. There are 2,00,000 images and every image is rated by more than 100 subjects. Mean score is calculated and the scores are normalized.
The distribution of the scores is approximately gaussian. So I have decided to build a 10 class classification model after assigning appropriate weight for each class as the data is imbalanced.
My question:
For this problem, the scores are continuous, ie, 0<0.2<0.3<0.4<0.5<..<1.
Then does that mean this is a regression problem? If so, how do I balance the data for a regression problem, as most of the datapoints are present in between 0.4 and 0.6.
Thanks!
Since your labels are continuous, you could divide them in to 10 equal quantiles using a technique like pandas.qcut() and provide label to each classes. This can turn a regression problem to a classification problem.
And as far as the imbalance is concerned, you may want to try to oversample the minority data. This will ensure your model is not biased towards majority data.
Hope this helps.
I would recommend you to do a Histogram Equalization over ALL data of your participants first, so that their ratings are destributed equaly.
Then for each image in your training set calculate the Expected Value (and if you also want to, the Variance) The Expected Value is just the mean of the votes. For the Variance there are standard functions in (almost) every programming language where you can input an array of votes which will output the Variance.
Now take the Expected Value (and if you want also the Variance) as your ground truth for your Network.
EDIT: Histogram Equalization:
Histogram equalization is a method to use the given numerical range as efficient as possible.
In the context of images, this would change the pixel values, so that the darkest pixel becomes the value 0 and the lightest value becomes 255. Furthermore every grayscale value gets destributed so that it occurs as often as each other (in average). For your dataset you want the same. Even though your values are not from 0 to 255 but from 0 to 10. Furthermore you don't need to (and shoudn't) round the resulting values to integers. In this way more often occurring votes are more spread and less often votes are contracted.
Maybe you should first calculate the expected value and than do the histogram equalization over the expected values of all images.
By this the CNN sould be able to better differentiate those small differences.

Accuracy of Neural network Output-Matlab ANN Toolbox

I'm relatively new to Matlab ANN Toolbox. I am training the NN with pattern recognition and target matrix of 3x8670 containing 1s and 0s, using one hidden layer, 40 neurons and the rest with default settings. When I get the simulated output for new set of inputs, then the values are around 0 and 1. I then arrange them in descending order and choose a fixed number(which is known to me) out of 8670 observations to be 1 and rest to be zero.
Every time I run the program, the first row of the simulated output always has close to 100% accuracy and the following rows dont exhibit the same kind of accuracy.
Is there a logical explanation in general? I understand that answering this query conclusively might require the understanding of program and problem, but its made of of several functions to clearly explain. Can I make some changes in the training to get consistence output?
If you have any suggestions please share it with me.
Thanks,
Nishant
Your problem statement is not clear for me. For example, what you mean by: "I then arrange them in descending order and choose a fixed number ..."
As I understand, you did not get appropriate output from your NN as compared to the real target. I mean, your output from NN is difference than target. If so, there are different possibilities which should be considered:
How do you divide training/test/validation sets for training phase? The most division should be assigned to training (around 75%) and rest for test/validation.
How is your training data set? Can it support most scenarios as you expected? If your trained data set is not somewhat similar to your test data sets (e.g., you have some new records/samples in the test data set which had not (near) appear in the training phase, it explains as 'outlier' and NN cannot work efficiently with these types of samples, so you need clustering approach not NN classification approach), your results from NN is out-of-range and NN cannot provide ideal accuracy as you need. NN is good for those data set training, where there is no very difference between training and test data sets. Otherwise, NN is not appropriate.
Sometimes you have an appropriate training data set, but the problem is training itself. In this condition, you need other types of NN, because feed-forward NNs such as MLP cannot work with compacted and not well-separated regions of data very well. You need strong function approximation such as RBF and SVM.

SVM Classification with Cross Validation

I am new to using Matlab and am trying to follow the example in the Bioinformatics Toolbox documentation (SVM Classification with Cross Validation) to handle a classification problem.
However, I am not able to understand Step 9, which says:
Set up a function that takes an input z=[rbf_sigma,boxconstraint], and returns the cross-validation value of exp(z).
The reason to take exp(z) is twofold:
rbf_sigma and boxconstraint must be positive.
You should look at points spaced approximately exponentially apart.
This function handle computes the cross validation at parameters
exp([rbf_sigma,boxconstraint]):
minfn = #(z)crossval('mcr',cdata,grp,'Predfun', ...
#(xtrain,ytrain,xtest)crossfun(xtrain,ytrain,...
xtest,exp(z(1)),exp(z(2))),'partition',c);
What is the function that I should be implementing here? Is it exp or minfn? I will appreciate if you can give me the code for this section. Thanks.
I will like to know what does it mean when it says exp([rbf_sigma,boxconstraint])
rbf_sigma: The svm is using a gaussian kernel, the rbf_sigma set the standard deviation (~size) of the kernel. To understand how kernels work, the SVM is putting the kernel around every sample (so that you have a gaussian around every sample). Then the kernels are added up (sumed) for the samples of each category/type. At each point the type which sum is higher would be the "winner". For example if type A has a higher sum of these kernels at point X, then if you have a new datum to classify in point X, it will be classified as type A. (there are other configuration parameters that may change the actual threshold where a category is selected over another)
Fig. Analyze this figure from the webpage you gave us. You can see how by adding up the gaussian kernels on the red samples "sumA", and on the green samples "sumB"; it is logical that sumA>sumB in the center part of the figure. It is also logical that sumB>sumA in the outer part of the image.
boxconstraint: it is a cost/penalty over miss-classified data. During the training stage of the classifier, where you use the training data to adjust the SVM parameters, the training algorithm is using an error function to decide how to optimize the SVM parameters in an iterative fashion. The cost for a miss-classified sample is proportional to how far it is from the boundary where it would have been classified correctly. In the figure that I am attaching the boundary is the inner blue circumference.
Taking into account BGreene indications and from what I understand of the tutorial:
In the tutorial they advice to try values for rbf_sigma and boxconstraint that are exponentially apart. This means that you should compare values like {0.2, 2, 20, ...} (note that this is {2*10^(i-2), i=1,2,3,...}), and NOT like {0.2, 0.3, 0.4, 0.5} (which would be linearly apart). They advice this to try a wide range of values first. You can further optimize later FROM the first optimum that you obtained before.
The command "[searchmin fval] = fminsearch(minfn,randn(2,1),opts)" will give you back the optimum values for rbf_sigma and boxconstraint. Probably you have to use exp(z) because it affects how fminsearch increments the values of z(1) and z(2) during the search for the optimum value. I suppose that when you put exp(z(1)) in the definition of #minfn, then fminsearch will take 'exponentially' big steps.
In machine learning, always try to understand that there are three subsets in your data: training data, cross-validation data, and test data. The training set is used to optimize the parameters of the SVM classifier for EACH value of rbf_sigma and boxconstraint. Then the cross validation set is used to select the optimum value of the parameters rbf_sigma and boxconstraint. And finally the test data is used to obtain an idea of the performance of your classifier (the efficiency of the classifier is determined upon the test set).
So, if you start with 10000 samples you may divide the data for example as training(50%), cross-validation(25%), test(25%). So that you will sample randomly 5000 samples for the training set, then 2500 samples from the 5000 remaining samples for the cross-validation set, and the rest of samples (that is 2500) would be separated for the test set.
I hope that I could clarify your doubts. By the way, if you are interested in the optimization of the parameters of classifiers and machine learning algorithms I strongly suggest that you follow this free course -> www.ml-class.org (it is awesome, really).
You need to implement a function called crossfun (see example).
The function handle minfn is passed to fminsearch to be minimized.
exp([rbf_sigma,boxconstraint]) is the quantity being optimized to minimize classification error.
There are a number of functions nested within this function handle:
- crossval is producing the classification error based on cross validation using partition c
- crossfun - classifies data using an SVM
- fminsearch - optimizes SVM hyperparameters to minimize classification error
Hope this helps

Rapidminer - neural net operator - output confidence

I have feed-forward neural network with six inputs, 1 hidden layer and two output nodes (1; 0). This NN is learned by 0;1 values.
When applying model, there are created variables confidence(0) and confidence(1), where sum of this two numbers for each row is 1.
My question is: what do these two numbers (confidence(0) and confidence(1)) exactly mean? Are these two numbers probabilities?
Thanks for answers
In general
The confidence values (or scores, as they are called in other programs) represent a measure how, well, confident the model is that the presented example belongs to a certain class. They are highly dependent on the general strategy and the properties of the algorithm.
Examples
The easiest example to illustrate is the majority classifier, who just assigns the same score for all observations based on the proportions in the original testset
Another is example the k-nearest-neighbor-classifier, where the score for a class i is calculated by averaging the distance to those examples which both belong to the k-nearest-neighbors and have class i. Then the score is sum-normalized across all classes.
In the specific example of NN, I do not know how they are calculated without checking the code. I guess it is just the value of output node, sum-normalized across both classes.
Do the confidences represent probabilities ?
In general no. To illustrate what probabilities in this context mean: If an example has probability 0.3 for class "1", then 30% of all examples with similar feature/variable values should belong to class "1" and 70% should not.
As far as I know, his task is called "calibration". For this purpose some general methods exist (e.g. binning the scores and mapping them to the class-fraction of the corresponding bin) and some classifier-dependent (like e.g. Platt Scaling which has been invented for SVMs). A good point to start is:
Bianca Zadrozny, Charles Elkan: Transforming Classifier Scores into Accurate Multiclass Probability Estimates
The confidence measures correspond to the proportion of outputs 0 and 1 that are activated in the initial training dataset.
E.g. if 30% of your training set has outputs (1;0) and the remaining 70% has outputs (0; 1), then confidence(0) = 30% and confidence(1) = 70%

Principal component analysis

I have to write a classificator (gaussian mixture model) that I use for human action recognition.
I have 4 dataset of video. I choose 3 of them as training set and 1 of them as testing set.
Before I apply the gm model on the training set I run the pca on it.
pca_coeff=princomp(trainig_data);
score = training_data * pca_coeff;
training_data = score(:,1:min(size(score,2),numDimension));
During the testing step what should I do? Should I execute a new princomp on testing data
new_pca_coeff=princomp(testing_data);
score = testing_data * new_pca_coeff;
testing_data = score(:,1:min(size(score,2),numDimension));
or I should use the pca_coeff that I compute for the training data?
score = testing_data * pca_coeff;
testing_data = score(:,1:min(size(score,2),numDimension));
The classifier is being trained on data in the space defined by the principle components of the training data. It doesn't make sense to evaluate it in a different space - therefore, you should apply the same transformation to testing data as you did to training data, so don't compute a different pca_coef.
Incidently, if your testing data is drawn independently from the same distribution as the training data, then for large enough training and test sets, the principle components should be approximately the same.
One method for choosing how many principle components to use involves examining the eigenvalues from the PCA decomposition. You can get these from the princomp function like this:
[pca_coeff score eigenvalues] = princomp(data);
The eigenvalues variable will then be an array where each element describes the amount of variance accounted for by the corresponding principle component. If you do:
plot(eigenvalues);
you should see that the first eigenvalue will be the largest, and they will rapidly decrease (this is called a "Scree Plot", and should look like this: http://www.ats.ucla.edu/stat/SPSS/output/spss_output_pca_5.gif, though your one may have up to 800 points instead of 12).
Principle components with small corresponding eigenvalues are unlikely to be useful, since the variance of the data in those dimensions is so small. Many people choose a threshold value, and then select all principle components where the eigenvalue is above that threshold. An informal way of picking the threshold is to look at the Scree plot and choose the threshold to be just after the line 'levels out' - in the image I linked earlier, a good value might be ~0.8, selecting 3 or 4 principle components.
IIRC, you could do something like:
proportion_of_variance = sum(eigenvalues(1:k)) ./ sum(eigenvalues);
to calculate "the proportion of variance described by the low dimensional data".
However, since you are using the principle components for a classification task, you can't really be sure that any particular number of PCs is optimal; the variance of a feature doesn't necessarily tell you anything about how useful it will be for classification. An alternative to choosing PCs with the Scree plot is just to try classification with various numbers of principle components and see what the best number is empirically.