What can use to avoid the msgSend function overhead?(Obj-c) - iphone

Hello everyone help me please!!!!
What can use to avoid the msgSend function overhead?
maybe answer is IMP, but I not sure.

You could simply inline the function to avoid any function call overhead. Then it would be faster than even a C function! But before you start down this path - are you certain this level of optimisation is warranted? You are more likely to get a better payoff by optimizing the algorithm.
The use of IMP is very rarely required. The method dispatching in Objective-C (especially in the 64-bit runtime) has been very heavily optimised, and exploits many tricks for speed.
What profiling have you done that tells you that method dispatching is the cause of your performance issue? I suggest first you examine the algorithm to see first of all where the most expensive operations are, and see if there is a more efficient way to implement it.
To answer your question, a quick search finds some directly relevant questions similar to yours right here on SO, with some great and detailed answers:
Objective-C optimization
Objective-C and use of SEL/IMP

Related

How to measure method efficiency in lisp?

For example, in Prolog time/1 can be used in order to measure the amount of inferences a method call produces.
Is there something similar in Lisp to measure the efficiency of a method to another? That would be extremely useful.
Thanks in advance for the help!
Common Lisp (the standard) offers time, which
prints various timing data and other information to trace output
Implementations usually provide more profiling tools which will tell you more detailed information about the function calls &c.
There is also a portable profiler called Metering.

how to understand the linkagemex function inside of the defaule linkage function in matlab

I need to rewrite the linkage function in matlab. Now, as I examine it, I realized there is a method called linkagemex inside of it. But I simply cannot step into this method to see its code. Can anyone help me out with this strange situastion?
function Z= linkage (Y, method, pdistArg, varargin)
Z=linkagemex(Y,method);
PS. I think I am pretty good at learning, but matlab is not so easy to learn. If you have good references to learn it well, feel free to let me know. Thanks very much for your time and attention.
As #m.s. mentions, you've found a call to a MEX function. MEX functions are implemented as C code that is compiled into a function callable by MATLAB.
As you've found, you can't step into this method (as it is compiled C code, not MATLAB code), and you don't have access to the C source code, as it's not supplied with MATLAB.
Normally, you would be at kind of a dead end here. Fortunately, that's not quite the case with linkagemex. You'll notice on line 240 of linkage.m that it actually does a test to see whether linkagemex is present. If it isn't, it instead calls a local subfunction linkageold.
I think you can assume that linkageold does at least roughly the same thing as linkagemex. You may like to test them out with a few suitable input arguments to see if they give the same results. If so, then you should be able to rewrite linkage using the code from linkageold rather than linkagemex.
I'm going to comment more generally, related to your PS. Over the last few days I've been answering a few of your questions - and you do seem like a fast learner. But it's not really that MATLAB is hard to learn - you should realize that what you're attempting (rewriting the clustering behaviour of phytree) is not an easy thing to do for even a very advanced user.
MathWorks write their stuff in a way that makes it (hopefully) easy to use - but not necessarily in a way that makes it easy for users to extend or modify. Sometimes they do things for performance reasons that make it impossible for you to modify, as you've found with linkagemex. In addition, phytree is implemented using an old style of OO programming that is no longer properly documented, so even if you have the code, it's difficult to work out what it even does, unless you happen to have been working with MATLAB for years and remember how the old style worked.
My advice would be that you might find it easier to just implement your own clustering method from scratch, rather than trying to build on top of phytree. There will be a lot of further headaches for you down the road you're on, and mostly what you'll learn is that phytree is implemented in an obscure old-fashioned way. If you take the opportunity to implement your own from scratch, you could instead be learning how to implement things using more modern OO methods, which would be more useful for you in the future.
Your call though, that's just my thoughts. Happy to continue trying to answer questions when I can, if you choose to continue with the phytree route.
You came across a MEX function, which "are dynamically linked subroutines that the MATLAB interpreter loads and executes". Since these subroutines are natively compiled, you cannot step into them. See also the MATLAB documentation about MEX functions.

When would I write a non-tail recursive function in Scala?

Since non-tail recursion calls use stack frames like Java does, I'd think you'd be using it very sparingly, if at all. This seems however severely restrictive given it's one of the most important tools.
When can I use non-tail recursion functions? Also, are there plans to remove the memory restriction in the future?
In the same situations where it would be safe in Java, where the dataset you are working with never grows huge and the performance isn't critical/hot path of your app.
Also, IMHO, there are times when the clarity of non tail recursion version of an algorithm is way better than the tail recursive version.

Why would you NOT want the compiler to optimize your code?

Once I realized there is the option for this in GCC, I asked google and plenty of people want to know how to tell the compiler not to optimize the code. This seems counter-productive, what purpose can this serve to help the programmer? Debugging perhaps? How would it help in a situation where it is preferred to do this?
You said it - debugging. The optimizer can restructure code so that functions no longer exist and statements are intermingled. Turning off optimization is often necessary to allow a debugger to map machine/byte code addresses back to a source location.
As Tikhon mentions, it can also be useful if the optimizer has a bug.
The main reason is compile time: turning on optimizations can significantly increase build times without necessarily giving much benefit.
Also, certain optimizations can affect the accuracy and correctness of your program. However, these optimizations usually need to be turned on explicitly rather than with a flag like -O2.
Some optimizations--things like inlining--can increase the size of the executable. In certain cases, this is an important consideration.
Optimization can also have negative effects on your code. For example, speed might increase but at the expense of using more memory. This is not always desirable.

Speed Comparison: C++ vs Objective C [duplicate]

When programming a CPU intensive or GPU intensive application on the iPhone or other portable hardware, you have to make wise algorithmic decisions to make your code fast.
But even great algorithm choices can be slow if the language you're using performs more poorly than another.
Is there any hard data comparing Objective-C to C++, specifically on the iPhone but maybe just on the Mac desktop, for performance of various similar language aspects? I am very familiar with this article comparing C and Objective-C, but this is a larger question of comparing two object oriented languages to each other.
For example, is a C++ vtable lookup really faster than an Obj-C message? How much faster? Threading, polymorphism, sorting, etc. Before I go on a quest to build a project with duplicate object models and various test code, I want to know if anybody has already done this and what the results where. This type of testing and comparison is a project in and of itself and can take a considerable amount of time. Maybe this isn't one project, but two and only the outputs can be compared.
I'm looking for hard data, not evangelism. Like many of you I love and hate both languages for various reasons. Furthermore, if there is someone out there actively pursuing this same thing I'd be interesting in pitching in some code to see the end results, and I'm sure others would help out too. My guess is that they both have strengths and weaknesses, my goal is to find out precisely what they are so that they can be avoided/exploited in real-world scenarios.
Mike Ash has some hard numbers for performance of various Objective-C method calls versus C and C++ in his post "Performance Comparisons of Common Operations". Also, this post
by Savoy Software is an interesting read when it comes to tuning the performance of an iPhone application by using Objective-C++.
I tend to prefer the clean, descriptive syntax of Objective-C over Objective-C++, and have not found the language itself to be the source of my performance bottlenecks. I even tend to do things that I know sacrifice a little bit of performance if they make my code much more maintainable.
Yes, well written C++ is considerably faster. If you're writing performance critical programs and your C++ is not as fast as C (or within a few percent), something's wrong. If your ObjC implementation is as fast as C, then something's usually wrong -- i.e. the program is likely a bad example of ObjC OOD because it probably uses some 'dirty' tricks to step below the abstraction layer it is operating within, such as direct ivar accesses.
The Mike Ash 'comparison' is very misleading -- I would never recommend the approach to compare execution times of programs you have written, or recommend it to compare C vs C++ vs ObjC. The results presented are provided from a test with compiler optimizations disabled. A program compiled with optimizations disabled is rarely relevant when you are measuring execution times. To view it as a benchmark which compares C++ against Objective-C is flawed. The test also compares individual features, rather than entire, real world optimized implementations -- individual features are combined in very different ways with both languages. This is far from a realistic performance benchmark for optimized implementations. Examples: With optimizations enabled, IMP cache is as slow as virtual function calls. Static dispatch (as opposed to dynamic dispatch, e.g. using virtual) and calls to known C++ types (where dynamic dispatch may be bypassed) may be optimized aggressively. This process is called devirtualization, and when it is used, a member function which is declared virtual may even be inlined. In the case of the Mike Ash test where many calls are made to member functions which have been declared virtual and have empty bodies: these calls are optimized away entirely when the type is known because the compiler sees the implementation and is able to determine dynamic dispatch is unnecessary. The compiler can also eliminate calls to malloc in optimized builds (favoring stack storage). So, enabling compiler optimizations in any of C, C++, or Objective-C can produce dramatic differences in execution times.
That's not to say the presented results are entirely useless. You could get some useful information about external APIs if you want to determine if there are measurable differences between the times they spend in pthread_create or +[NSObject alloc] on one platform or architecture versus another. Of course, these two examples will be using optimized implementations in your test (unless you happen to be developing them). But for comparing one language to another in programs you compile… the presented results are useless with optimizations disabled.
Object Creation
Consider also object creation in ObjC - every object is allocated dynamically (e.g. on the heap). With C++, objects may be created on the stack (e.g. approximately as fast as creating a C struct and calling a simple function in many cases), on the heap, or as elements of abstract data types. Each time you allocate and free (e.g. via malloc/free), you may introduce a lock. When you create a C struct or C++ object on the stack, no lock is required (although interior members may use heap allocations) and it often costs just a few instructions or a few instructions plus a function call.
As well, ObjC objects are reference counted instances. The actual need for an object to be a std::shared_ptr in performance critical C++ is very rare. It's not necessary or desirable in C++ to make every instance a shared, reference counted instance. You have much more control over ownership and lifetime with C++.
Arrays and Collections
Arrays and many collections in C and C++ also use strongly typed containers and contiguous memory. Since the address of the next element's members are often known, the optimizer can do much more, and you have great cache and memory locality. With ObjC, that's far from reality for standard objects (e.g. NSObject).
Dispatch
Regarding methods, many C++ implementations use few virtual/dynamic calls, particularly in highly optimized programs. These are static method calls and fodder for the optimizers.
With ObjC methods, each method call (objc message send) is dynamic, and is consequently a firewall for the optimizer. Ultimately, that results in many restrictions or inconveniences regarding what you can and cannot do to keep performance at a minimum when writing performance critical ObjC. This may result in larger methods, IMP caching, frequent use of C.
Some realtime applications cannot use any ObjC messaging in their render paths. None -- audio rendering is a good example of this. ObjC dispatch is simply not designed for realtime purposes; Allocations and locks may happen behind the scenes when messaging objects, making the complexity/time of objc messaging unpredictable enough that the audio rendering may miss its deadline.
Other Features
C++ also provides generics/template implementations for many of its libraries. These optimize very well. They are typesafe, and a lot of inlining and optimizations may be made with templates (consider it polymorphism, optimization, and specialization which takes place at compilation). C++ adds several features which just are not available or comparable in strict ObjC. Trying to directly compare langs, objects, and libraries which are very different is not so useful -- it's a very small subset of actual realizations. It's better to expand the question to a library/framework or real program, considering many aspects of design and implementation.
Other Points
C and C++ symbols can be more easily removed and optimized away in various stages of the build (stripping, dead code elimination, inlining and early inlining, as well as Link Time Optimization). The benefits of this include reduced binary sizes, reduced launch/load times, reduced memory consumption, etc.. For a single app, that may not be such a big deal; but if you reuse a lot of code, and you should, then your shared libraries could add a lot of unnecessary weight to the program, if implemented ObjC -- unless you are prepared to jump through some flaming hoops. So scalability and reuse are also factors in medium/large projects, and groups where reuse is high.
Included Libraries
ObjC library implementors also optimize for the environment, so its library implementors can make use of some language and environment features to offer optimized implementations. Although there are some pretty significant restrictions when writing an optimized program in pure ObjC, some highly optimized implementations exist in Cocoa. This is one of Cocoa's strong points, although the C++ standard library (what some people call the STL) is no slouch either. Cocoa operates at a much higher level of abstraction than C++ -- if you don't know well what you're doing (or should be doing), operating closer to the metal can really cost you. Falling back on to a good library implementation if you are not an expert in some domain is a good thing, unless you are really prepared to learn. As well, Cocoa's environments are limited; you can find implementations/optimizations which make better use of the OS.
If you're writing optimized programs and have experience doing so in both C++ and ObjC, clean C++ implementations will often be twice as fast or faster than clean ObjC (yes, you can compare against Cocoa). If you know how to optimize, you can often do better than higher level, general purpose abstractions. Although, some optimized C++ implementations will be as fast as or slower than Cocoa's (e.g. my initial attempt at file I/O was slower than Cocoa's -- primarily because the C++ implementation initializes its memory).
A lot of it comes down to the language features you are familiar with. I use both langs, they both have different strengths and models/patterns. They complement each other quite well, and there are great libraries for both. If you're implementing a complex, performance critical program, correct use of C++'s features and libraries will give you much more control and provide significant advantages for optimization, such that in the right hands, "several times faster" is a good default expectation (don't expect to win every time, or without some work, however). Remember, it takes years to understand C++ well enough to really reach that point.
I keep the majority of my performance critical paths as C++, but also recognize that ObjC is also a very good solution for some problems, and that there are some very good libraries available.
It's very hard to collect "hard data" for this that's not misguiding.
The biggest problem with doing a feature-to-feature comparison like you suggest is that the two languages encourage very different coding styles. Objective-C is a dynamic language with duck typing, where typical C++ usage is static. The same object-oriented architecture problem would likely have very different ideal solutions using C++ or Objective-C.
My feeling (as I have programmed much in both languages, mostly on huge projects): To maximize Objective-C performance, it has to be written very close to C. Whereas with C++, it's possible to make much more use of the language without any performance penalty compared to C.
Which one is better? I don't know. For pure performance, C++ will always have the edge. But the OOP style of Objective-C definitely has its merits. I definitely think it is easier to keep a sane architecture with it.
This really isn't something that can be answered in general as it really depends on how you use the language features. Both languages will have things that they are fast at, things that they are slow at, and things that are sometimes fast and sometimes slow. It really depends on what you use and how you use it. The only way to be certain is to profile your code.
In Objective C you can also write c++ code, so it might be easier to code in Objective C for the most part, and if you find something that doesn't perform well in it, then you can have a go at writting a c++ version of it and seeing if that helps (C++ tends to optimize better at compile time). Objective C will be easier to use if APIs you are interfacing with are also written in it, plus you might find it's style of OOP is easier or more flexible.
In the end, you should go with what you know you can write safe, robust code in and if you find an area that needs special attention from the other language, then you can swap to that. X-Code does allow you to compile both in the same project.
I have a couple of tests I did on an iPhone 3G almost 2 years ago, there was no documentation or hard numbers around in those days. Not sure how valid they still are but the source code is posted and attached.
This isn't a very extensive test, I was mainly interested in NSArray vs C Array for iterating a large number of objects.
http://memo.tv/nsarray_vs_c_array_performance_comparison
http://memo.tv/nsarray_vs_c_array_performance_comparison_part_ii_makeobjectsperformselector
You can see the C Array is much faster at high iterations. Since then I've realized that the bottleneck is probably not the iteration of the NSArray but the sending of the message. I wanted to try methodForSelector and calling the methods directly to see how big the difference would be but never got round to it. According to Mike Ash's benchmarks it's just over 5x faster.
I don't have hard data for Objective C, but I do have a good place to look for C++.
C++ started as C with Classes according to Bjarne Stroustroup in his reflection on the early years of C++ (http://www2.research.att.com/~bs/hopl2.pdf), so C++ can be thought of (like Objective C) as pushing C to its limits for object orientation.
What are those limits? In the 1994-1997 time frame, a lot of researchers figured out that object-orientation came at a cost due to dynamic binding, e.g. when C++ functions are marked virtual and there may/may not be children classes that override these functions. (In Java and C#, all functions expect ctors are inherently virtual, and there isnt' much you can do about it.) In "A Study of Devirtualization Techniques for a Java Just-In-Time Compiler" from researchers at IBM Research Tokyo, they contrast the techniques used to deal with this, including one from Urz Hölzle and Gerald Aigner. Urz Hölzle, in a separate paper with Karel Driesen, had shown that on average 5.7% of time in C++ programs (and up to ~50%) was spent in calling virtual functions (e.g. vtables + thunks). He later worked with some Smalltalk researachers in what ended up the Java HotSpot VM to solve these problems in OO. Some of these features are being backported to C++ (e.g. 'protected' and Exception handling).
As I mentioned, C++ is static typed where Objective C is duck typed. The performance difference in execution (but not lines of code) probably is a result of this difference.
This study says to really get the performance in a CPU intensive game, you have to use C. The linked article is complete with a XCode project that you can run.
I believe the bottom line is: Use Objective-C where you must interact with the iPhone's functions (after all, putting trampolines everywhere can't be good for anyone), but when it comes to loops, things like vector object classes, or intensive array access, stick with C++ STL or C arrays to get good performance.
I mean it would be totally silly to see position = [[Vector3 alloc] init] ;. You're just asking for a performance hit if you use references counts on basic objects like a position vector.
yes. c++ reign supreme in performance/expresiveness/resource tradeoff.
"I'm looking for hard data, not evangelism". google is your best friend.
obj-c nsstring is swapped with c++'s by apple enginneers for performance. in a resource constrained devices, only c++ cuts it as a MAINSTREAM oop language.
NSString stringWithFormat is slow
obj-c oop abstraction is deconstructed into procedural-based c-structs for performance, otherwise a MAGNITUDE order slower than java! the author is also aware of message caching - yet no-go. so modeling lots of small players/enemies objects is done in oop with c++ or else, lots of Procedural structs with a simple OOP wrapper around it with obj-c. there can be one paradigm that equates Procedural + Object-Oriented Programming = obj-c.
http://ejourneyman.wordpress.com/2008/04/23/writing-a-ray-tracer-for-cocoa-objective-c/