Related
Hello everyone help me please!!!!
What can use to avoid the msgSend function overhead?
maybe answer is IMP, but I not sure.
You could simply inline the function to avoid any function call overhead. Then it would be faster than even a C function! But before you start down this path - are you certain this level of optimisation is warranted? You are more likely to get a better payoff by optimizing the algorithm.
The use of IMP is very rarely required. The method dispatching in Objective-C (especially in the 64-bit runtime) has been very heavily optimised, and exploits many tricks for speed.
What profiling have you done that tells you that method dispatching is the cause of your performance issue? I suggest first you examine the algorithm to see first of all where the most expensive operations are, and see if there is a more efficient way to implement it.
To answer your question, a quick search finds some directly relevant questions similar to yours right here on SO, with some great and detailed answers:
Objective-C optimization
Objective-C and use of SEL/IMP
A friend of mine needs to implement some statistical calculations in hardware.
She wants it to be accomplished using VHDL.
(cross my heart, I haven't written a line of code in VHDL and know nothing about its subtleties)
In particular, she needs a direct analogue of MATLAB's betainc function.
Is there a good package around for doing this?
Any hints on the implementation are also highly appreciated.
If it's not a good idea at all, please tell me about it as well.
Thanks a lot!
There isn't a core available that performs an incomplete beta function in the Xilinx toolset. I can't speak for the other toolsets available, although I would doubt that there is such a thing.
What Xilinx does offer is a set of signal processing blocks, like multipliers, adders and RAM Blocks (amongst other things, filters, FFTs), that can be used together to implement various custom signal transforms.
In order for this to be done, there needs to be a complete understanding of the inner workings of the transform to be applied.
A good first step is to implement the function "manually" in matlab as a proof of concept:
Instead of using the built-in function in matlab, your friend can try to implement the function just using fundamental operators like multipliers and adders.
The results can be compared with those produced by the built-in function for verification.
The concept can then be moved to VHDL using the building blocks that are provided.
Doing this for the incomplete beta function isn't something for the faint-hearted, but it can be done.
As far as I know there is no tool which allow interface of VHDL and matlab.
But interface of VHDL and C is fairly easy, so if you can implement your code(MATLAB's betainc function) in C then it can be done easily with FLI(foreign language interface).
If you are using modelsim below link can be helpful.
link
First of all a word of warning, if you haven't done any VHDL/FPGA work before, this is probably not the best place to start. With VHDL (and other HDL languages) you are basically describing hardware, rather than a sequential line of commands to execute on a processor (as you are with C/C++, etc.). You thus need a completely different skill- and mind-set when doing FPGA-development. Just because something can be written in VHDL, it doesn't mean that it actually can work in an FPGA chip (that it is synthesizable).
With that said, Xilinx (one of the major manufacturers of FPGA chips and development tools) does provide the System Generator package, which interfaces with Matlab and can automatically generate code for FPGA chips from this. I haven't used it myself, so I'm not at all sure if it's usable in your friend's case - but it's probably a good place to start.
The System Generator User guide (link is on the previously linked page) also provides a short introduction to FPGA chips in general, and in the context of using it with Matlab.
You COULD write it yourself. However, the incomplete beta function is an integral. For many values of the parameters (as long as both are greater than 1) it is fairly well behaved. However, when either parameter is less than 1, a singularity arises at an endpoint, making the problem a bit nasty. The point is, don't write it yourself unless you have a solid background in numerical analysis.
Anyway, there are surely many versions in C available. Netlib must have something, or look in Numerical Recipes. Or compile it from MATLAB. Then link it in as nav_jan suggests.
As an alternative to VHDL, you could use MyHDL to write and test your beta function - that can produce synthesisable (ie. can go into an FPGA chip) VHDL (or Verilog as you wish) out of the back end.
MyHDL is an extra set of modules on top of Python which allow hardware to be modelled, verified and generated. Python will be a much more familiar environment to write validation code in than VHDL (which is missing many of the abstract data types you might take for granted in a programming language).
The code under test will still have to be written with a "hardware mindset", but that is usually a smaller piece of code than the test environment, so in some ways less hassle than figuring out how to work around the verification limitations of VHDL.
Obviously, that will depend on what you want to do: numerical analysis, threading, databases, etc. I've seen the benchmarks; Larceny and Bigloo seem to come up ahead. Is there any implementation of Scheme that performs pretty well in several different benchmarks? Are there any that can create code that runs faster than produced by SBCL? I don't see why SBCL should be so fast - Scheme is a far simpler language than Common Lisp!
http://community.schemewiki.org/?Stalin
http://en.wikipedia.org/wiki/Stalin_(Scheme_implementation)
From Wikipedia:
Stalin (STAtic Language ImplementatioN) is an aggressive optimizing
batch whole-program Scheme compiler written by Jeffrey Mark Siskind.
It uses advanced flow analysis and type inference and a variety of
other optimization techniques to produce code. Stalin is intended for
production use in generating an optimized executable.
The compiler itself runs slowly, and there is little or no support for
debugging or other niceties. Full R4RS Scheme is supported, with a few
minor and rarely encountered omissions. Interfacing to external C
libraries is straightforward. The compiler itself does lifetime
analysis and hence does not generate as much garbage as might be
expected, but global reclamation of storage is done using the Boehm
garbage collector.
It seems that Stalin is no longer being developed.
Among the Schemes that are fully standards compliant (at least with R5RS) and ready for prime-time use, Chez Scheme must be the fastest.
Based on these benchmarks, it looks like Chez Scheme, Gambit, and Racket are roughly tied for the title of Fastest Scheme.
When programming a CPU intensive or GPU intensive application on the iPhone or other portable hardware, you have to make wise algorithmic decisions to make your code fast.
But even great algorithm choices can be slow if the language you're using performs more poorly than another.
Is there any hard data comparing Objective-C to C++, specifically on the iPhone but maybe just on the Mac desktop, for performance of various similar language aspects? I am very familiar with this article comparing C and Objective-C, but this is a larger question of comparing two object oriented languages to each other.
For example, is a C++ vtable lookup really faster than an Obj-C message? How much faster? Threading, polymorphism, sorting, etc. Before I go on a quest to build a project with duplicate object models and various test code, I want to know if anybody has already done this and what the results where. This type of testing and comparison is a project in and of itself and can take a considerable amount of time. Maybe this isn't one project, but two and only the outputs can be compared.
I'm looking for hard data, not evangelism. Like many of you I love and hate both languages for various reasons. Furthermore, if there is someone out there actively pursuing this same thing I'd be interesting in pitching in some code to see the end results, and I'm sure others would help out too. My guess is that they both have strengths and weaknesses, my goal is to find out precisely what they are so that they can be avoided/exploited in real-world scenarios.
Mike Ash has some hard numbers for performance of various Objective-C method calls versus C and C++ in his post "Performance Comparisons of Common Operations". Also, this post
by Savoy Software is an interesting read when it comes to tuning the performance of an iPhone application by using Objective-C++.
I tend to prefer the clean, descriptive syntax of Objective-C over Objective-C++, and have not found the language itself to be the source of my performance bottlenecks. I even tend to do things that I know sacrifice a little bit of performance if they make my code much more maintainable.
Yes, well written C++ is considerably faster. If you're writing performance critical programs and your C++ is not as fast as C (or within a few percent), something's wrong. If your ObjC implementation is as fast as C, then something's usually wrong -- i.e. the program is likely a bad example of ObjC OOD because it probably uses some 'dirty' tricks to step below the abstraction layer it is operating within, such as direct ivar accesses.
The Mike Ash 'comparison' is very misleading -- I would never recommend the approach to compare execution times of programs you have written, or recommend it to compare C vs C++ vs ObjC. The results presented are provided from a test with compiler optimizations disabled. A program compiled with optimizations disabled is rarely relevant when you are measuring execution times. To view it as a benchmark which compares C++ against Objective-C is flawed. The test also compares individual features, rather than entire, real world optimized implementations -- individual features are combined in very different ways with both languages. This is far from a realistic performance benchmark for optimized implementations. Examples: With optimizations enabled, IMP cache is as slow as virtual function calls. Static dispatch (as opposed to dynamic dispatch, e.g. using virtual) and calls to known C++ types (where dynamic dispatch may be bypassed) may be optimized aggressively. This process is called devirtualization, and when it is used, a member function which is declared virtual may even be inlined. In the case of the Mike Ash test where many calls are made to member functions which have been declared virtual and have empty bodies: these calls are optimized away entirely when the type is known because the compiler sees the implementation and is able to determine dynamic dispatch is unnecessary. The compiler can also eliminate calls to malloc in optimized builds (favoring stack storage). So, enabling compiler optimizations in any of C, C++, or Objective-C can produce dramatic differences in execution times.
That's not to say the presented results are entirely useless. You could get some useful information about external APIs if you want to determine if there are measurable differences between the times they spend in pthread_create or +[NSObject alloc] on one platform or architecture versus another. Of course, these two examples will be using optimized implementations in your test (unless you happen to be developing them). But for comparing one language to another in programs you compile… the presented results are useless with optimizations disabled.
Object Creation
Consider also object creation in ObjC - every object is allocated dynamically (e.g. on the heap). With C++, objects may be created on the stack (e.g. approximately as fast as creating a C struct and calling a simple function in many cases), on the heap, or as elements of abstract data types. Each time you allocate and free (e.g. via malloc/free), you may introduce a lock. When you create a C struct or C++ object on the stack, no lock is required (although interior members may use heap allocations) and it often costs just a few instructions or a few instructions plus a function call.
As well, ObjC objects are reference counted instances. The actual need for an object to be a std::shared_ptr in performance critical C++ is very rare. It's not necessary or desirable in C++ to make every instance a shared, reference counted instance. You have much more control over ownership and lifetime with C++.
Arrays and Collections
Arrays and many collections in C and C++ also use strongly typed containers and contiguous memory. Since the address of the next element's members are often known, the optimizer can do much more, and you have great cache and memory locality. With ObjC, that's far from reality for standard objects (e.g. NSObject).
Dispatch
Regarding methods, many C++ implementations use few virtual/dynamic calls, particularly in highly optimized programs. These are static method calls and fodder for the optimizers.
With ObjC methods, each method call (objc message send) is dynamic, and is consequently a firewall for the optimizer. Ultimately, that results in many restrictions or inconveniences regarding what you can and cannot do to keep performance at a minimum when writing performance critical ObjC. This may result in larger methods, IMP caching, frequent use of C.
Some realtime applications cannot use any ObjC messaging in their render paths. None -- audio rendering is a good example of this. ObjC dispatch is simply not designed for realtime purposes; Allocations and locks may happen behind the scenes when messaging objects, making the complexity/time of objc messaging unpredictable enough that the audio rendering may miss its deadline.
Other Features
C++ also provides generics/template implementations for many of its libraries. These optimize very well. They are typesafe, and a lot of inlining and optimizations may be made with templates (consider it polymorphism, optimization, and specialization which takes place at compilation). C++ adds several features which just are not available or comparable in strict ObjC. Trying to directly compare langs, objects, and libraries which are very different is not so useful -- it's a very small subset of actual realizations. It's better to expand the question to a library/framework or real program, considering many aspects of design and implementation.
Other Points
C and C++ symbols can be more easily removed and optimized away in various stages of the build (stripping, dead code elimination, inlining and early inlining, as well as Link Time Optimization). The benefits of this include reduced binary sizes, reduced launch/load times, reduced memory consumption, etc.. For a single app, that may not be such a big deal; but if you reuse a lot of code, and you should, then your shared libraries could add a lot of unnecessary weight to the program, if implemented ObjC -- unless you are prepared to jump through some flaming hoops. So scalability and reuse are also factors in medium/large projects, and groups where reuse is high.
Included Libraries
ObjC library implementors also optimize for the environment, so its library implementors can make use of some language and environment features to offer optimized implementations. Although there are some pretty significant restrictions when writing an optimized program in pure ObjC, some highly optimized implementations exist in Cocoa. This is one of Cocoa's strong points, although the C++ standard library (what some people call the STL) is no slouch either. Cocoa operates at a much higher level of abstraction than C++ -- if you don't know well what you're doing (or should be doing), operating closer to the metal can really cost you. Falling back on to a good library implementation if you are not an expert in some domain is a good thing, unless you are really prepared to learn. As well, Cocoa's environments are limited; you can find implementations/optimizations which make better use of the OS.
If you're writing optimized programs and have experience doing so in both C++ and ObjC, clean C++ implementations will often be twice as fast or faster than clean ObjC (yes, you can compare against Cocoa). If you know how to optimize, you can often do better than higher level, general purpose abstractions. Although, some optimized C++ implementations will be as fast as or slower than Cocoa's (e.g. my initial attempt at file I/O was slower than Cocoa's -- primarily because the C++ implementation initializes its memory).
A lot of it comes down to the language features you are familiar with. I use both langs, they both have different strengths and models/patterns. They complement each other quite well, and there are great libraries for both. If you're implementing a complex, performance critical program, correct use of C++'s features and libraries will give you much more control and provide significant advantages for optimization, such that in the right hands, "several times faster" is a good default expectation (don't expect to win every time, or without some work, however). Remember, it takes years to understand C++ well enough to really reach that point.
I keep the majority of my performance critical paths as C++, but also recognize that ObjC is also a very good solution for some problems, and that there are some very good libraries available.
It's very hard to collect "hard data" for this that's not misguiding.
The biggest problem with doing a feature-to-feature comparison like you suggest is that the two languages encourage very different coding styles. Objective-C is a dynamic language with duck typing, where typical C++ usage is static. The same object-oriented architecture problem would likely have very different ideal solutions using C++ or Objective-C.
My feeling (as I have programmed much in both languages, mostly on huge projects): To maximize Objective-C performance, it has to be written very close to C. Whereas with C++, it's possible to make much more use of the language without any performance penalty compared to C.
Which one is better? I don't know. For pure performance, C++ will always have the edge. But the OOP style of Objective-C definitely has its merits. I definitely think it is easier to keep a sane architecture with it.
This really isn't something that can be answered in general as it really depends on how you use the language features. Both languages will have things that they are fast at, things that they are slow at, and things that are sometimes fast and sometimes slow. It really depends on what you use and how you use it. The only way to be certain is to profile your code.
In Objective C you can also write c++ code, so it might be easier to code in Objective C for the most part, and if you find something that doesn't perform well in it, then you can have a go at writting a c++ version of it and seeing if that helps (C++ tends to optimize better at compile time). Objective C will be easier to use if APIs you are interfacing with are also written in it, plus you might find it's style of OOP is easier or more flexible.
In the end, you should go with what you know you can write safe, robust code in and if you find an area that needs special attention from the other language, then you can swap to that. X-Code does allow you to compile both in the same project.
I have a couple of tests I did on an iPhone 3G almost 2 years ago, there was no documentation or hard numbers around in those days. Not sure how valid they still are but the source code is posted and attached.
This isn't a very extensive test, I was mainly interested in NSArray vs C Array for iterating a large number of objects.
http://memo.tv/nsarray_vs_c_array_performance_comparison
http://memo.tv/nsarray_vs_c_array_performance_comparison_part_ii_makeobjectsperformselector
You can see the C Array is much faster at high iterations. Since then I've realized that the bottleneck is probably not the iteration of the NSArray but the sending of the message. I wanted to try methodForSelector and calling the methods directly to see how big the difference would be but never got round to it. According to Mike Ash's benchmarks it's just over 5x faster.
I don't have hard data for Objective C, but I do have a good place to look for C++.
C++ started as C with Classes according to Bjarne Stroustroup in his reflection on the early years of C++ (http://www2.research.att.com/~bs/hopl2.pdf), so C++ can be thought of (like Objective C) as pushing C to its limits for object orientation.
What are those limits? In the 1994-1997 time frame, a lot of researchers figured out that object-orientation came at a cost due to dynamic binding, e.g. when C++ functions are marked virtual and there may/may not be children classes that override these functions. (In Java and C#, all functions expect ctors are inherently virtual, and there isnt' much you can do about it.) In "A Study of Devirtualization Techniques for a Java Just-In-Time Compiler" from researchers at IBM Research Tokyo, they contrast the techniques used to deal with this, including one from Urz Hölzle and Gerald Aigner. Urz Hölzle, in a separate paper with Karel Driesen, had shown that on average 5.7% of time in C++ programs (and up to ~50%) was spent in calling virtual functions (e.g. vtables + thunks). He later worked with some Smalltalk researachers in what ended up the Java HotSpot VM to solve these problems in OO. Some of these features are being backported to C++ (e.g. 'protected' and Exception handling).
As I mentioned, C++ is static typed where Objective C is duck typed. The performance difference in execution (but not lines of code) probably is a result of this difference.
This study says to really get the performance in a CPU intensive game, you have to use C. The linked article is complete with a XCode project that you can run.
I believe the bottom line is: Use Objective-C where you must interact with the iPhone's functions (after all, putting trampolines everywhere can't be good for anyone), but when it comes to loops, things like vector object classes, or intensive array access, stick with C++ STL or C arrays to get good performance.
I mean it would be totally silly to see position = [[Vector3 alloc] init] ;. You're just asking for a performance hit if you use references counts on basic objects like a position vector.
yes. c++ reign supreme in performance/expresiveness/resource tradeoff.
"I'm looking for hard data, not evangelism". google is your best friend.
obj-c nsstring is swapped with c++'s by apple enginneers for performance. in a resource constrained devices, only c++ cuts it as a MAINSTREAM oop language.
NSString stringWithFormat is slow
obj-c oop abstraction is deconstructed into procedural-based c-structs for performance, otherwise a MAGNITUDE order slower than java! the author is also aware of message caching - yet no-go. so modeling lots of small players/enemies objects is done in oop with c++ or else, lots of Procedural structs with a simple OOP wrapper around it with obj-c. there can be one paradigm that equates Procedural + Object-Oriented Programming = obj-c.
http://ejourneyman.wordpress.com/2008/04/23/writing-a-ray-tracer-for-cocoa-objective-c/
This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Why is Lisp used for AI?
What makes a language suitable for Artificial Intelligence development?
I've heard that LISP and Prolog are widely used in this field. What features make them suitable for AI?
Overall I would say the main thing I see about languages "preferred" for AI is that they have high order programming along with many tools for abstraction.
It is high order programming (aka functions as first class objects) that tends to be a defining characteristic of most AI languages http://en.wikipedia.org/wiki/Higher-order_programming that I can see. That article is a stub and it leaves out Prolog http://en.wikipedia.org/wiki/Prolog which allows high order "predicates".
But basically high order programming is the idea that you can pass a function around like a variable. Surprisingly a lot of the scripting languages have functions as first class objects as well. LISP/Prolog are a given as AI languages. But some of the others might be surprising. I have seen several AI books for Python. One of them is http://www.nltk.org/book. Also I have seen some for Ruby and Perl. If you study more about LISP you will recognize a lot of its features are similar to modern scripting languages. However LISP came out in 1958...so it really was ahead of its time.
There are AI libraries for Java. And in Java you can sort of hack functions as first class objects using methods on classes, it is harder/less convenient than LISP but possible. In C and C++ you have function pointers, although again they are much more of a bother than LISP.
Once you have functions as first class objects, you can program much more generically than is otherwise possible. Without functions as first class objects, you might have to construct sum(array), product(array) to perform the different operations. But with functions as first class objects you could compute accumulate(array, +) and accumulate(array, *). You could even do accumulate(array, getDataElement, operation). Since AI is so ill defined that type of flexibility is a great help. Now you can build much more generic code that is much easier to extend in ways that were not originally even conceived.
And Lambda (now finding its way all over the place) becomes a way to save typing so that you don't have to define every function. In the previous example, instead of having to make getDataElement(arrayelement) { return arrayelement.GPA } somewhere you can just say accumulate(array, lambda element: return element.GPA, +). So you don't have to pollute your namespace with tons of functions to only be called once or twice.
If you go back in time to 1958, basically your choices were LISP, Fortran, or Assembly. Compared to Fortran LISP was much more flexible (unfortunately also less efficient) and offered much better means of abstraction. In addition to functions as first class objects, it also had dynamic typing, garbage collection, etc. (stuff any scripting language has today). Now there are more choices to use as a language, although LISP benefited from being first and becoming the language that everyone happened to use for AI. Now look at Ruby/Python/Perl/JavaScript/Java/C#/and even the latest proposed standard for C you start to see features from LISP sneaking in (map/reduce, lambdas, garbage collection, etc.). LISP was way ahead of its time in the 1950's.
Even now LISP still maintains a few aces in the hole over most of the competition. The macro systems in LISP are really advanced. In C you can go and extend the language with library calls or simple macros (basically a text substitution). In LISP you can define new language elements (think your own if statement, now think your own custom language for defining GUIs). Overall LISP languages still offer ways of abstraction that the mainstream languages still haven't caught up with. Sure you can define your own custom compiler for C and add all the language constructs you want, but no one does that really. In LISP the programmer can do that easily via Macros. Also LISP is compiled and per the programming language shootout, it is more efficient than Perl, Python, and Ruby in general.
Prolog basically is a logic language made for representing facts and rules. What are expert systems but collections of rules and facts. Since it is very convenient to represent a bunch of rules in Prolog, there is an obvious synergy there with expert systems.
Now I think using LISP/Prolog for every AI problem is not a given. In fact just look at the multitude of Machine Learning/Data Mining libraries available for Java. However when you are prototyping a new system or are experimenting because you don't know what you are doing, it is way easier to do it with a scripting language than a statically typed one. LISP was the earliest languages to have all these features we take for granted. Basically there was no competition at all at first.
Also in general academia seems to like functional languages a lot. So it doesn't hurt that LISP is functional. Although now you have ML, Haskell, OCaml, etc. on that front as well (some of these languages support multiple paradigms...).
The main calling card of both Lisp and Prolog in this particular field is that they support metaprogramming concepts like lambdas. The reason that is important is that it helps when you want to roll your own programming language within a programming language, like you will commonly want to do for writing expert system rules.
To do this well in a lower-level imperative language like C, it is generally best to just create a separate compiler or language library for your new (expert system rule) language, so you can write your rules in the new language and your actions in C. This is the principle behind things like CLIPS.
The two main things you want are the ability to do experimental programming and the ability to do unconventional programming.
When you're doing AI, you by definition don't really know what you're doing. (If you did, it wouldn't be AI, would it?) This means you want a language where you can quickly try things and change them. I haven't found any language I like better than Common Lisp for that, personally.
Similarly, you're doing something not quite conventional. Prolog is already an unconventional language, and Lisp has macros that can transform the language tremendously.
What do you mean by "AI"? The field is so broad as to make this question unanswerable. What applications are you looking at?
LISP was used because it was better than FORTRAN. Prolog was used, too, but no one remembers that. This was when people believed that symbol-based approaches were the way to go, before it was understood how hard the sensing and expression layers are.
But modern "AI" (machine vision, planners, hell, Google's uncanny ability to know what you 'meant') is done in more efficient programming languages that are more sustainable for a large team to develop in. This usually means C++ these days--but it's not like anyone thinks of C++ as a good language for AI.
Hell, you can do a lot of what was called "AI" in the 70s in MATLAB. No one's ever called MATLAB "a good language for AI" before, have they?
Functional programming languages are easier to parallelise due to their stateless nature. There seems to already be a subject about it with some good answers here: Advantages of stateless programming?
As said, its also generally simpler to build programs that generate programs in LISP due to the simplicity of the language, but this is only relevant to certain areas of AI such as evolutionary computation.
Edit:
Ok, I'll try and explain a bit about why parallelism is important to AI using Symbolic AI as an example, as its probably the area of AI that I understand best. Basically its what everyone was using back in the day when LISP was invented, and the Physical Symbol Hypothesis on which it is based is more or less the same way you would go about calculating and modelling stuff in LISP code. This link explains a bit about it:
http://www.cs.st-andrews.ac.uk/~mkw/IC_Group/What_is_Symbolic_AI_full.html
So basically the idea is that you create a model of your environment, then searching through it to find a solution. One of the simplest to algorithms to implement is a breadth first search, which is an exhaustive search of all possible states. While producing an optimal result, it is usually prohibitively time consuming. One way to optimise this is by using a heuristic (A* being an example), another is to divide the work between CPUs.
Due to statelessness, in theory, any node you expand in your search could be ran in a separate thread without the complexity or overhead involved in locking shared data. In general, assuming the hardware can support it, then the more highly you can parallelise a task the faster you will get your result. An example of this could be the folding#home project, which distributes work over many GPUs to find optimal protein folding configurations (that may not have anything to do with LISP, but is relevant to parallelism).
As far as I know from LISP is that is a Functional Programming Language, and with it you are able to make "programs that make programs. I don't know if my answer suits your needs, see above links for more information.
Pattern matching constructs with instantiation (or the ability to easily construct pattern matching code) are a big plus. Pattern matching is not totally necessary to do A.I., but it can sure simplify the code for many A.I. tasks. I'm finding this also makes F# a convenient language for A.I.
Languages per se (without libraries) are suitable/comfortable for specific areas of research/investigation and/or learning/studying ("how to do the simplest things in the hardest way").
Suitability for commercial development is determined by availability of frameworks, libraries, development tools, communities of developers, adoption by companies. For ex., in internet you shall find support for any, even the most exotic issue/areas (including, of course, AI areas), for ex., in C# because it is mainstream.
BTW, what specifically is context of question? AI is so broad term.
Update:
Oooops, I really did not expect to draw attention and discussion to my answer.
Under ("how to do the simplest things in the hardest way"), I mean that studying and learning, as well as academic R&D objectives/techniques/approaches/methodology do not coincide with objectives of (commercial) development.
In student (or even academic) projects one can write tons of code which would probably require one line of code in commercial RAD (using of component/service/feature of framework or library).
Because..! oooh!
Because, there is no sense to entangle/develop any discussion without first agreeing on common definitions of terms... which are subjective and depend on context... and are not so easy to be formulate in general/abstract context.
And this is inter-disciplinary matter of whole areas of different sciences
The question is broad (philosophical) and evasively formulated... without beginning and end... having no definitive answers without of context and definitions...
Are we going to develop here some spec proposal?