5-dimensional plotting in matlab for classification - matlab

I want to create a 5 dimensional plotting in matlab. I have two files in my workspace. one is data(150*4). In this file, I have 150 data and each has 4 features. Since I want to classify them, I have another file called "labels" (150*1) that includes a label for each data in data files. In other words the label are the class of data and I have 3 class: 1,2,3
I want to plot this classification, but i can't...
Naris

You need to think about what kind of plot you want to see. 5 dimensions are difficult to visualize, unless of course, your hyper-dimensional monitor is working. Mine never came back from the repair shop. (That should teach me for sending it out.)
Seriously, 5 dimensional data really can be difficult to visualize. The usual solution is to plot points in a 2-d space (the screen coordinates of a figure, for example. This is what plot essentially does.) Then use various attributes of the points plotted to show the other three dimensions. This is what Chernoff faces do for you. If you have the stats toolbox, then it looks like glyphplot will help you out. Or you can plot in 3-d, then use two attributes to show the other two dimensions.
Another idea is to plot points in 2-d to show two of the dimensions, then use color to indicate the other three dimensions. Thus, the RGB assigned to that marker will be defined by the other three dimensions. Of course, that means you must be able to visualize what the RGB coordinates of a color represent, so you need to understand color as it is represented in an RGB space.

You can use scatter3 to plot your data, using three features of data as dimensions, the fourth as color, and the class as different markers
figure,hold on
markerList = 'o*+';
for iClass = 1:nClasses
classIdx = dataClass==iClass;
scatter3(data(classIdx,1),data(classIdx,2),data(classIdx,3),[],data(classIdx,4),...
'marker',markerList(iClass));
end
When you use color to represent one of the features, I suggest to use a good colormap, such as pmkmp from the Matlab File Exchange instead of the default jet.
Alternatively, you can use e.g. mdscale to transform your higher-dimensional data to 2D for standard plotting.

There's a model called SOM (Self-organizing Maps) which builds a 2-D image of a multidimensional space.

Related

How to check if two shapes in a binary image are similar in MATLAB?

I have two binary images, each of which have a single white filled parallelogram and a black background. The only difference between the two images is that the parallelograms are in different locations and are slightly different from one another in shape. All the parameters between the two images are the same except for that one change.
I want to check how similar the shape of the two parallelograms are, by using some sort of comparing measure.
I looked into ssimval function in MATLAB but it seems to be taking the whole image into consideration rather than just the white blobs. Is there any other function I can use for this purpose?
For visually checking similarity, you can plot their probability density function and for numeric similarity, compute some similarity measure, such as, KL Divergence, etc.
In a simple way, you can segment your binary image with simple bwlabel function. Then use regionprops function to find perimeter and area of your desire segment. Moreover, center of region is also another comparison point.
You could do it with polygons, by using the polyshape class.
First convert the binary mask to a set of corner points. You can do it with a convex hull, by calling regionprops(bwI, 'ConvexHull').
Then convert the corner points into polygons, by calling polyshape.
Finally measure the dissimiliarities of the polygons by measuring their turning distance. Turning distance is rotation- and scaling invariant, so you might want to add additive terms to your distance metric for those if your problem demands it.
A very simple solution for comparing two binary image is using boolean operations.
Your images contains zero and one values. so If you use boolean operation.
suppose your two images are : B1 , B2
C = B1 & (~B2)
if sum(C(:))==0
% two image are same
else
% two image are different
end

MATLAB: Digitizing a plot with multiple variables and implementing the data

I have 8 plots which I want to implement in my Matlab code. These plots originate from several research papers, hence, I need to digitize them first in order to be able to use them.
An example of a plot is shown below:
This is basically a surface plot with three different variables. I know how to digitize a regular plot with just X and Y coordinates. However, how would one digitize a graph like this? I am quite unsure, hence, the question.
Also, If I would be able to obtain the data from this plot. How would you be able to utilize it in your code? Maybe with some interpolation and extrapolation between the given data points?
Any tips regarding this topic are welcome.
Thanks in advance
Here is what I would suggest:
Read the image in Matlab using imread.
Manually find the pixel position of the left bottom corner and the upper right corner
Using these pixels values and the real numerical value, it is simple to determine the x and y value of every pixel. I suggest you use meshgrid.
Knowing that the curves are in black, then remove every non-black pixel from the image, which leaves you only with the curves and the numbers.
Then use the function bwareaopen to remove the small objects (the numbers). Don't forget to invert the image to remove the black instead of the white.
Finally, by using point #3 and the result of point #6, you can manually extract the data of the graph. It won't be easy, but it will be feasible.
You will need the data for the three variables in order to create a plot in Matlab, which you can get either from the previous research or by estimating and interpolating values from the plot. Once you get the data though, there are two functions that you can use to make surface plots, surface and surf, surf is pretty much the same as surface but includes shading.
For interpolation and extrapolation it sounds like you might want to check out 2D interpolation, interp2. The interp2 function can also do extrapolation as well.
You should read the documentation for these functions and then post back with specific problems if you have any.

Constructing voxels of a 3D cube in MATLAB

I want to construct a 3D cube in MATLAB. I know that the units of any 3D shape are voxels not pixels. Here is what I want to do,
First, I want to construct a cube with some given dimensions x, y, and z.
Second, according to what I understand from different image processing tutorials, this cube must consists of voxels (3D pixels). I want to give every voxel an initial color value, say gray.
Third, I want to access every voxel and change its color, but I want to distinguish the voxels that represent the faces of the cube from those that represent the internal region. I want to axis every voxel by its position x,y, z. At the end, we will end up with a cube that have different colors regions.
I've searched a lot but couldn't find a good way to implement that, but the code given here seems very close in regard to constructing the internal region of the cube,
http://www.mathworks.com/matlabcentral/fileexchange/3280-voxel
But it's not clear to me how it performs the process.
Can anyone tell me how to build such a cube in MATLAB?
Thanks.
You want to plot voxels! Good! Lets see how we can do this stuff.
First of all: yeah, the unit of 3D shapes may be voxels, but they don't need to be. You can plot an sphere in 3D without it being "blocky", thus you dont need to describe it in term of voxels, the same way you don't need to describe a sinusoidal wave in term of pixels to be able to plot it on screen. Look at the figure below. (same happens for cubes)
If you are interested in drawing voxels, I generally would recommend you to use vol3D v2 from Matlab's FEX. Why that instead of your own?
Because the best (only?) way of plotting voxels is actually plotting flat square surfaces, 6 for each cube (see answer here for function that does that). This flat surfaces will also create some artifacts for something called z-fighting in computer graphics. vol3D actually only plots 3 surfaces, the ones looking at you, saving half of the computational time, and avoiding ugly plotting artifacts. It is easy to use, you can define colors per voxel and also the alpha (transparency) of each of them, allowing you to see inside.
Example of use:
% numbers are arbitrary
cube=zeros(11,11,11);
cube(3:9,3:9,3:9)=5; % Create a cube inside the region
% Boring: faces of the cube are a different color.
cube(3:9,3:9,3)=2;
cube(3:9,3:9,9)=2;
cube(3:9,3,3:9)=2;
cube(3:9,9,3:9)=2;
cube(3,3:9,3:9)=2;
cube(9,3:9,3:9)=2;
vold3d('Cdata',cube,'alpha',cube/5)
But yeah, that still looks bad. Because if you want to see the inside, voxel plotting is not the best option. Alphas of different faces stack one on top of the other and the only way of solving this is writing advanced computer graphics ray tracing algorithms, and trust me, that's a long and tough road to take.
Very often one has 4D data, thus data that contains 3D location and a single data for each of the locations. One may think that in this case, you really want voxels, as each of them have a 3D +color, 4D data. Indeed! you can do it with voxels, but sometimes its better to describe it in some other ways. As an example, lets see this person who wanted to highlight a region in his/hers 4D space (link). To see a bigger list I suggest you look at my answer in here about 4D visualization techniques.
Lets try wits a different approach than the voxel one. Lets use the previous cube and create isosurfaces whenever the 4D data changes of value.
iso1=isosurface(cube,1);
iso2=isosurface(cube,4);
p1=patch(iso1,'facecolor','r','facealpha',0.3,'linestyle','none');
p2=patch(iso2,'facecolor','g','facealpha',1,'linestyle','none');
% below here is code for it to look "fancy"
isonormals(cube,p1)
view(3);
axis tight
axis equal
axis off
camlight
lighting gouraud
And this one looks way better, in my opinion.
Choose freely and good plotting!

Creating a feature vector in MATLAB

I have calculated texture, color and shape features on an image.But those just add up to 12 features. I read that people extract 1000 features and such. Could someone please explain to me how do i increase the number of features? And then how do i save them to form a feature vector?
Features are the most significant or interest points of an image.In general lets say I am interested in the edges information of an image.As we know edges are found by laplacian filter in spatial domain so the only points that will remain in the image will be edges point.Each edge point will have its x,y co-ordinate followed by intensity value.These three information of all the interest points would probably lead to multi-dimension feature vector in this case which would be depend on the type of image you are taking.These three multidimensional information will be called my feature vector.
Similarly histogram of an image can also be your feature which will range from 0 to 255 value for an gray scale image.So in that case you can store for every image this 255 values as features.
Hope you got the idea.Image is an subjective thing so depending on any application and given data set we will extract features and form feature vectors.
Apart from color,texture and shape you can even work on the signatures,edges,histogram and so on properties of an image.

Matlab - Band-like diagram

I am trying to reproduce a band-like diagram, like the one in figure from windows defrag.
In principle, it can be easily obtained by doing a contourf of a matrix which is constant along one dimension (corresponding to the vertical dimension in the picture).
Do you know if there are native ways to obtain such a diagram?
Try:
vec = [1*ones(1,10), 2*ones(1,5), 3*ones(1,20), 4*ones(1,15)];
image('CData',vec, 'CDataMapping','direct')
colormap(lines(4))
axis tight off
or maybe even:
imshow(repmat(vec,10,1), lines(4))
imshow(vec, lines(4), 'YData',[0 10])
This is using an indexed image with direct color mapping, where the value 1 gets mapped to first color, value 2 mapped to second color and so on.. You can of course use your own colormap by specifying a N-by-3 matrix.
Not sure if this is what you are requesting, but there is no specialised function in matlab to do this. However, you could easily implement your own function that uses line to draw a large number of lines based on your data. Using get/set on the handles of the lines would let you control their colour, width etc. (also based on the input to your function).