I'm working with StanfordNLP to extract data from a parsed Tree.
I'm using Scala for coding.
val tp = TregexPattern.compile("SOME_PATTERN")
val res = tp.matcher("SOME_TREE")
to read the results of this I use
while (res.find()) {
println(res.getMatch.getLeaves.mkString(" "))
}
I want to rewrite this while-loop in for-loop.
How about this:
val tp = TregexPattern.compile("SOME_PATTERN")
val res = tp.matcher("SOME_TREE")
for(it <- Iterator.continually(res.getMatch).takeWhile(_ => res.find)) {
println(it.getLeaves.mkString(" "))
}
Related
def buildDf(df:DataFrame,platformKey: PlatformKey):DataFrame=
{
var dataF = df
val selectedColumns = getSelectedColumns(platformKey)
for((newStructCol,colAtribute) <- selectedColumns._2 )
{
dataF = dataF.withColumn(newStructCol,struct(colAtribute:_*))
}
dataF
}
How can i make this method to only use val . I am trying to add columns to my spark dataframe . is there a better way to code this and what issues I can face with my code?
I have an array of DataFrames that I obtain by using randomSplit() in this manner:
val folds = df.randomSplit(Array.fill(5)(1.0/5)) //Array[Dataset[Row]]
I'll be iterating over folds using a for loop, where I will be dropping the ith entry inside folds and store it separately. Then I will be using all the others as another DataFrame as in my code below:
val df = spark.read.format("csv").load("xyz")
val folds = df.randomSplit(Array.fill(5)(1.0/5))
for (i <- folds.indices) {
var ts = folds
val testSet = ts(i)
ts = ts.drop(i)
var trainSet = spark.createDataFrame(spark.sparkContext.emptyRDD[Row], testSet.schema)
for (j <- ts.indices) {
trainSet = trainSet.union(ts(j))
}
}
While this does serve my purpose, I was also trying another approach where I would still separate folds into ts and testSet, and then use the flatten function for the remaining inside ts to create another DataFrame using something like this:
val df = spark.read.format("csv").load("xyz")
val folds = df.randomSplit(Array.fill(5)(1.0/5))
for (i <- folds.indices) {
var ts = folds
val testSet = ts(i)
ts = ts.drop(i)
var trainSet = ts.flatten
}
But at the initialization of the trainSet line, I get an error that: No Implicits Found for parameter asTrav: Dataset[Row] => Traversable[U_]. I have also done import spark.implicits._ after initializing the SparkSession.
My end goal with the creation of trainSet after flatten is to retrieve a DataFrame created after joining (union) the other Dataset[Row]s inside ts. I'm not sure where I'm going wrong.
I'm using Spark 2.4.5 with Scala 2.11.12
EDIT 1: Added how I read the Dataframe
I'm not sure what's your intention here but instead of using mutable variables and flattening you can do recursive iteration like this:
val folds = df.randomSplit(Array.fill(5)(1.0/5)) //Array[Dataset[Row]]
val testSet = spark.createDataFrame(Seq.empty)
val trainSet = spark.createDataFrame(spark.sparkContext.emptyRDD[Row], testSet.schema)
go(folds, Array.empty)
def go(items: Array[Dataset[Row]], result: Array[Dataset[Row]]): Array[Dataset[Row]] = items match {
case arr # Array(_, _*) =>
val res = arr.map { t =>
trainSet.union(t)
}
go(arr.tail, result ++ res)
case Array() => result
}
As I have seen the use case of testSet, there is no usage of it in the method body
I have replaced that for loop with a simple reduce:
val trainSet = ts.reduce((a,b) => a.union(b))
Within this code we have two files: athletes.csv that contains names, and twitter.test that contains the tweet message. We want to find name for every single line in the twitter.test that match the name in athletes.csv We applied map function to store the name from athletes.csv and want to iterate all of the name to all of the line in the test file.
object twitterAthlete {
def loadAthleteNames() : Map[String, String] = {
// Handle character encoding issues:
implicit val codec = Codec("UTF-8")
codec.onMalformedInput(CodingErrorAction.REPLACE)
codec.onUnmappableCharacter(CodingErrorAction.REPLACE)
// Create a Map of Ints to Strings, and populate it from u.item.
var athleteInfo:Map[String, String] = Map()
//var movieNames:Map[Int, String] = Map()
val lines = Source.fromFile("../athletes.csv").getLines()
for (line <- lines) {
var fields = line.split(',')
if (fields.length > 1) {
athleteInfo += (fields(1) -> fields(7))
}
}
return athleteInfo
}
def parseLine(line:String): (String)= {
var athleteInfo = loadAthleteNames()
var hello = new String
for((k,v) <- athleteInfo){
if(line.toString().contains(k)){
hello = k
}
}
return (hello)
}
def main(args: Array[String]){
Logger.getLogger("org").setLevel(Level.ERROR)
val sc = new SparkContext("local[*]", "twitterAthlete")
val lines = sc.textFile("../twitter.test")
var athleteInfo = loadAthleteNames()
val splitting = lines.map(x => x.split(";")).map(x => if(x.length == 4 && x(2).length <= 140)x(2))
var hello = new String()
val container = splitting.map(x => for((key,value) <- athleteInfo)if(x.toString().contains(key)){key}).cache
container.collect().foreach(println)
// val mapping = container.map(x => (x,1)).reduceByKey(_+_)
//mapping.collect().foreach(println)
}
}
the first file look like:
id,name,nationality,sex,height........
001,Michael,USA,male,1.96 ...
002,Json,GBR,male,1.76 ....
003,Martin,female,1.73 . ...
the second file look likes:
time, id , tweet .....
12:00, 03043, some message that contain some athletes names , .....
02:00, 03023, some message that contain some athletes names , .....
some thinks like this ...
but i got empty result after running this code, any suggestions is much appreciated
result i got is empty :
()....
()...
()...
but the result that i expected something like:
(name,1)
(other name,1)
You need to use yield to return value to your map
val container = splitting.map(x => for((key,value) <- athleteInfo ; if(x.toString().contains(key)) ) yield (key, 1)).cache
I think you should just start with the simplest option first...
I would use DataFrames so you can use the built-in CSV parsing and leverage Catalyst, Tungsten, etc.
Then you can use the built-in Tokenizer to split the tweets into words, explode, and do a simple join. Depending how big/small the data with athlete names is you'll end up with a more optimized broadcast join and avoid a shuffle.
import org.apache.spark.sql.functions._
import org.apache.spark.ml.feature.Tokenizer
val tweets = spark.read.format("csv").load(...)
val athletes = spark.read.format("csv").load(...)
val tokenizer = new Tokenizer()
tokenizer.setInputCol("tweet")
tokenizer.setOutputCol("words")
val tokenized = tokenizer.transform(tweets)
val exploded = tokenized.withColumn("word", explode('words))
val withAthlete = exploded.join(athletes, 'word === 'name)
withAthlete.select(exploded("id"), 'name).show()
In my application, I'm using parallelize method to save an Array into file.
code as follows:
val sourceRDD = sc.textFile(inputPath + "/source")
val destinationRDD = sc.textFile(inputPath + "/destination")
val source_primary_key = sourceRDD.map(rec => (rec.split(",")(0).toInt, rec))
val destination_primary_key = destinationRDD.map(rec => (rec.split(",")(0).toInt, rec))
val extra_in_source = source_primary_key.subtractByKey(destination_primary_key)
val extra_in_destination = destination_primary_key.subtractByKey(source_primary_key)
val source_subtract = source_primary_key.subtract(destination_primary_key)
val Destination_subtract = destination_primary_key.subtract(source_primary_key)
val exact_bestmatch_src = source_subtract.subtractByKey(extra_in_source).sortByKey(true).map(rec => (rec._2))
val exact_bestmatch_Dest = Destination_subtract.subtractByKey(extra_in_destination).sortByKey(true).map(rec => (rec._2))
val exact_bestmatch_src_p = exact_bestmatch_src.map(rec => (rec.split(",")(0).toInt))
val primary_key_distinct = exact_bestmatch_src_p.distinct.toArray()
for (i <- primary_key_distinct) {
var dummyVar: String = ""
val src = exact_bestmatch_src.filter(line => line.split(",")(0).toInt.equals(i))
var dest = exact_bestmatch_Dest.filter(line => line.split(",")(0).toInt.equals(i)).toArray
for (print1 <- src) {
var sourceArr: Array[String] = print1.split(",")
var exactbestMatchCounter: Int = 0
var index: Array[Int] = new Array[Int](1)
println(print1 + "source")
for (print2 <- dest) {
var bestMatchCounter = 0
var i: Int = 0
println(print1 + "source + destination" + print2)
for (i <- 0 until sourceArr.length) {
if (print1.split(",")(i).equals(print2.split(",")(i))) {
bestMatchCounter += 1
}
}
if (exactbestMatchCounter < bestMatchCounter) {
exactbestMatchCounter = bestMatchCounter
dummyVar = print2
index +:= exactbestMatchCounter //9,8,9
}
}
var z = index.zipWithIndex.maxBy(_._1)._2
if (exactbestMatchCounter >= 0) {
var samparr: Array[String] = new Array[String](4)
samparr +:= print1 + " BEST_MATCH " + dummyVar
var deletedest: Array[String] = new Array[String](1)
deletedest = dest.take(z) ++ dest.drop(1)
dest = deletedest
val myFile = sc.parallelize((samparr)).saveAsTextFile(outputPath)
I have used parallelize method and I even tried with below method to save it as a file
val myFile = sc.textFile(samparr.toString())
val finalRdd = myFile
finalRdd.coalesce(1).saveAsTextFile(outputPath)
but its keep throwing the error :
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
You can't treat an RDD like a local collection. All operations against it happen over a distributed cluster. To work, all functions you run in that rdd must be serializable.
The line
for (print1 <- src) {
Here you are iterating over the RDD src, everything inside the loop must be serialize, as it will be run on the executors.
Inside however, you try to run sc.parallelize( while still inside that loop. SparkContext is not serializable. Working with rdds and sparkcontext are things you do on the driver, and cannot do within an RDD operation.
I'm entirely sure what you are trying to accomplish, but it looks like some sort of hand-coded join operation with the source and destination. You can't work with loops in rdds like you can with local collections. Make use of the apis map, join, groupby, and the like to create your final rdd then save that.
If you absolutely feel you must use a foreach loop over the rdd like this, then you can't use sc.parallelize().saveAsTextFile() Instead open an outputstream using the hadoop file api and write your array to the file manually.
Finally this piece of code helps me to save an array to file.
new PrintWriter(outputPath) { write(array.mkString(" ")); close }
I want to convert a set of time-serial data to Labeledpoint from multiple csv files and save to parquet file. Csv Files are small, usually < 10MiB
When I start it with ParArray, it submit 4 jobs a time and freeze . codes here
val idx = Another_DataFrame
ListFiles(new File("data/stock data"))
.filter(_.getName.contains(".csv")).zipWithIndex
.par //comment this line and code runs smoothly
.foreach{
f=>
val stk = spark_csv(f._1.getPath) //doing good
ColMerge(stk,idx,RESULT_PATH(f)) //freeze here
stk.unpersist()
}
and the freeze part:
def ColMerge(ori:DataFrame,index:DataFrame,PATH:String) = {
val df = ori.join(index,ori("date")===index("index_date")).drop("index_date").orderBy("date").cache
val head = df.head
val col = df.columns.filter(e=>e!="code"&&e!="date"&&e!="name")
val toMap = col.filter{
e=>head.get(head.fieldIndex(e)).isInstanceOf[String]
}.sorted
val toCast = col.diff(toMap).filterNot(_=="data")
val res: Array[((String, String, Array[Double]), Long)] = df.sort("date").map{
row=>
val res1= toCast.map{
col=>
row.getDouble(row.fieldIndex(col))
}
val res2= toMap.flatMap{
col=>
val mapping = new Array[Double](GlobalConfig.ColumnMapping(col).size)
row.getString(row.fieldIndex(col)).split(";").par.foreach{
word=>
mapping(GlobalConfig.ColumnMapping(col)(word)) = 1
}
mapping
}
(
row.getString(row.fieldIndex("code")),
row.getString(row.fieldIndex("date")),
res1++res2++row.getAs[Seq[Double]]("data")
)
}.zipWithIndex.collect
df.unpersist
val dataset = GlobalConfig.sctx.makeRDD(res.map{
day=>
(day._1._1,
day._1._2,
try{
new LabeledPoint(GetHighPrice(res(day._2.toInt+2)._1._3.slice(0,4))/GetLowPrice(res(day._2.toInt)._1._3.slice(0,4))*1.03,Vectors.dense(day._1._3))
}
catch {
case ex:ArrayIndexOutOfBoundsException=>
new LabeledPoint(-1,Vectors.dense(day._1._3))
}
)
}).filter(_._3.label != -1).toDF("code","date","labeledpoint")
dataset.write.mode(SaveMode.Overwrite).parquet(PATH)
}
The exact job that freezes is the DataFrame.sort() or zipWithIndex when generating res in ColMerge
Since most part of the job get done after collect I really want to use ParArray to accelerate ColMerge but this weird freeze stopped me from doing so. Do I need to new a thread pool to do this?