I want to convert a set of time-serial data to Labeledpoint from multiple csv files and save to parquet file. Csv Files are small, usually < 10MiB
When I start it with ParArray, it submit 4 jobs a time and freeze . codes here
val idx = Another_DataFrame
ListFiles(new File("data/stock data"))
.filter(_.getName.contains(".csv")).zipWithIndex
.par //comment this line and code runs smoothly
.foreach{
f=>
val stk = spark_csv(f._1.getPath) //doing good
ColMerge(stk,idx,RESULT_PATH(f)) //freeze here
stk.unpersist()
}
and the freeze part:
def ColMerge(ori:DataFrame,index:DataFrame,PATH:String) = {
val df = ori.join(index,ori("date")===index("index_date")).drop("index_date").orderBy("date").cache
val head = df.head
val col = df.columns.filter(e=>e!="code"&&e!="date"&&e!="name")
val toMap = col.filter{
e=>head.get(head.fieldIndex(e)).isInstanceOf[String]
}.sorted
val toCast = col.diff(toMap).filterNot(_=="data")
val res: Array[((String, String, Array[Double]), Long)] = df.sort("date").map{
row=>
val res1= toCast.map{
col=>
row.getDouble(row.fieldIndex(col))
}
val res2= toMap.flatMap{
col=>
val mapping = new Array[Double](GlobalConfig.ColumnMapping(col).size)
row.getString(row.fieldIndex(col)).split(";").par.foreach{
word=>
mapping(GlobalConfig.ColumnMapping(col)(word)) = 1
}
mapping
}
(
row.getString(row.fieldIndex("code")),
row.getString(row.fieldIndex("date")),
res1++res2++row.getAs[Seq[Double]]("data")
)
}.zipWithIndex.collect
df.unpersist
val dataset = GlobalConfig.sctx.makeRDD(res.map{
day=>
(day._1._1,
day._1._2,
try{
new LabeledPoint(GetHighPrice(res(day._2.toInt+2)._1._3.slice(0,4))/GetLowPrice(res(day._2.toInt)._1._3.slice(0,4))*1.03,Vectors.dense(day._1._3))
}
catch {
case ex:ArrayIndexOutOfBoundsException=>
new LabeledPoint(-1,Vectors.dense(day._1._3))
}
)
}).filter(_._3.label != -1).toDF("code","date","labeledpoint")
dataset.write.mode(SaveMode.Overwrite).parquet(PATH)
}
The exact job that freezes is the DataFrame.sort() or zipWithIndex when generating res in ColMerge
Since most part of the job get done after collect I really want to use ParArray to accelerate ColMerge but this weird freeze stopped me from doing so. Do I need to new a thread pool to do this?
Related
I have a dataframe in spark and I need to process a particular column in that dataframe using a REST API. The API does some transformation to a string and returns a result string. The API can process multiple strings at a time.
I can iterate over the columns of the dataframe, collect n values of the column in a batch and call the api and then add it back to the dataframe, and continue with the next batch. But this seems like the normal way of doing it without taking advantage of spark.
Is there a better way to do this which can take advantage of spark sql optimiser and spark parallel processing?
For Spark parallel processing you can use mapPartitions
case class Input(col: String)
case class Output ( col : String,new_col : String )
val data = spark.read.csv("/a/b/c").as[Input].repartiton(n)
def declare(partitions: Iterator[Input]): Iterator[Output] ={
val url = ""
implicit val formats: DefaultFormats.type = DefaultFormats
var list = new ListBuffer[Output]()
val httpClient =
try {
while (partitions.hasNext) {
val x = partitions.next()
val col = x.col
val concat_url =""
val apiResp = HttpClientAcceptSelfSignedCertificate.call(httpClient, concat_url)
if (apiResp.isDefined) {
val json = parse(apiResp.get)
val new_col = (json \\"value_to_take_from_api").children.head.values.toString
val output = Output(col,new_col)
list+=output
}
else {
val new_col = "Not Found"
val output = Output(col,new_col)
list+=output
}
}
} catch {
case e: Exception => println("api Exception with : " + e.getMessage)
}
finally {
HttpClientAcceptSelfSignedCertificate.close(httpClient)
}
list.iterator
}
val dd:Dataset[Output] =data.mapPartitions(x=>declare(x))
Well I am new to spark and scala and have been trying to implement cleaning of data in spark. below code checks for the missing value for one column and stores it in outputrdd and runs loops for calculating missing value. code works well when there is only one missing value in file. Since hdfs does not allow writing again on the same location it fails if there are more than one missing value. can you please assist in writing finalrdd to particular location once calculating missing values for all occurrences is done.
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("app").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val files = sc.wholeTextFiles("/input/raw_files/")
val file = files.map { case (filename, content) => filename }
file.collect.foreach(filename => {
cleaningData(filename)
})
def cleaningData(file: String) = {
//headers has column headers of the files
var hdr = headers.toString()
var vl = hdr.split("\t")
sqlContext.clearCache()
if (hdr.contains("COLUMN_HEADER")) {
//Checks for missing values in dataframe and stores missing values' in outputrdd
if (!outputrdd.isEmpty()) {
logger.info("value is zero then performing further operation")
val outputdatetimedf = sqlContext.sql("select date,'/t',time from cpc where kwh = 0")
val outputdatetimerdd = outputdatetimedf.rdd
val strings = outputdatetimerdd.map(row => row.mkString).collect()
for (i <- strings) {
if (Coddition check) {
//Calculates missing value and stores in finalrdd
finalrdd.map { x => x.mkString("\t") }.saveAsTextFile("/output")
logger.info("file is written in file")
}
}
}
}
}
}``
It is not clear how (Coddition check) works in your example.
In any case function .saveAsTextFile("/output") should be called only once.
So I would rewrite your example into this:
val strings = outputdatetimerdd
.map(row => row.mkString)
.collect() // perhaps '.collect()' is redundant
val finalrdd = strings
.filter(str => Coddition check str) //don't know how this Coddition works
.map (x => x.mkString("\t"))
// this part is called only once but not in a loop
finalrdd.saveAsTextFile("/output")
logger.info("file is written in file")
I think there may be a simple solution to this, I was wondering if anybody knew how to iterate over a set of files and output a value based on the files name.
My problem is, I want to read in a set of graph edges for each month, and then create a seperate monthly graphs.
Currently I've done this the long way, which is fine for doing one years worth, but I'd like a way to automate it.
You can see my code below which hopefully clearly shows what I am doing.
//Load vertex data
val vertices= (sc.textFile("D:~vertices.csv")
.map(line => line.split(",")).map(parts => (parts.head.toLong, parts.tail)))
//Define function for creating edges from csv file
def EdgeMaker(file: RDD[String]): RDD[Edge[String]] = {
file.flatMap { line =>
if (!line.isEmpty && line(0) != '#') {
val lineArray = line.split(",")
if (lineArray.length < 0) {
None
} else {
val srcId = lineArray(0).toInt
val dstId = lineArray(1).toInt
val ID = lineArray(2).toString
(Array(Edge(srcId.toInt, dstId.toInt, ID)))
}
} else {
None
}
}
}
//make graphs -This is where I want automation, so I can iterate through a
//folder of edge files and output corresponding monthly graphs.
val edgesJan = EdgeMaker(sc.textFile("D:~edges2011Jan.txt"))
val graphJan = Graph(vertices, edgesJan)
val edgesFeb = EdgeMaker(sc.textFile("D:~edges2011Feb.txt"))
val graphFeb = Graph(vertices, edgesFeb)
val edgesMar = EdgeMaker(sc.textFile("D:~edges2011Mar.txt"))
val graphMar = Graph(vertices, edgesMar)
val edgesApr = EdgeMaker(sc.textFile("D:~edges2011Apr.txt"))
val graphApr = Graph(vertices, edgesApr)
val edgesMay = EdgeMaker(sc.textFile("D:~edges2011May.txt"))
val graphMay = Graph(vertices, edgesMay)
val edgesJun = EdgeMaker(sc.textFile("D:~edges2011Jun.txt"))
val graphJun = Graph(vertices, edgesJun)
val edgesJul = EdgeMaker(sc.textFile("D:~edges2011Jul.txt"))
val graphJul = Graph(vertices, edgesJul)
val edgesAug = EdgeMaker(sc.textFile("D:~edges2011Aug.txt"))
val graphAug = Graph(vertices, edgesAug)
val edgesSep = EdgeMaker(sc.textFile("D:~edges2011Sep.txt"))
val graphSep = Graph(vertices, edgesSep)
val edgesOct = EdgeMaker(sc.textFile("D:~edges2011Oct.txt"))
val graphOct = Graph(vertices, edgesOct)
val edgesNov = EdgeMaker(sc.textFile("D:~edges2011Nov.txt"))
val graphNov = Graph(vertices, edgesNov)
val edgesDec = EdgeMaker(sc.textFile("D:~edges2011Dec.txt"))
val graphDec = Graph(vertices, edgesDec)
Any help or pointers on this would be much appreciated.
you can use Spark Context wholeTextFiles to map the filename, and use the String for naming/calling/filtering/etc your values/output/etc
val fileLoad = sc.wholeTextFiles("hdfs:///..Path").map { case (filename, content) => ... }
The Spark Context textFile only reads the data, but does not keep the file name.
----EDIT----
Sorry I seem to have mis-understood the question; you can load multiple files using
sc.wholeTextFiles("~/path/file[0-5]*,/anotherPath/*.txt").map { case (filename, content) => ... }
the asterisk * should load in all files in the path assuming they are all supported input file types.
This read will concatenate all your files into 1 single large RDD to avoid multiple calling (because each call, you have to specify the path and filename which is what you want to avoid I think).
Reading with the filename allows you to GroupBy the file name and apply your graph function to each group.
My task is to write a code that reads a big file (doesn't fit into memory) reverse it and output most five frequent words .
i have written the code below and it does the job .
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object ReverseFile {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Reverse File")
conf.set("spark.hadoop.validateOutputSpecs", "false")
val sc = new SparkContext(conf)
val txtFile = "path/README_mid.md"
val txtData = sc.textFile(txtFile)
txtData.cache()
val tmp = txtData.map(l => l.reverse).zipWithIndex().map{ case(x,y) => (y,x)}.sortByKey(ascending = false).map{ case(u,v) => v}
tmp.coalesce(1,true).saveAsTextFile("path/out.md")
val txtOut = "path/out.md"
val txtOutData = sc.textFile(txtOut)
txtOutData.cache()
val wcData = txtOutData.flatMap(l => l.split(" ")).map(word => (word, 1)).reduceByKey(_ + _).map(item => item.swap).sortByKey(ascending = false)
wcData.collect().take(5).foreach(println)
}
}
The problem is that i'm new to spark and scala, and as you can see in the code first i read the file reverse it save it then reads it reversed and output the five most frequent words .
Is there a way to tell spark to save tmp and process wcData (without the need to save,open file) at the same time because otherwise its like reading the file twice .
From now on i'm going to tackle with spark a lot, so if there is any part of the code (not like the absolute path name ... spark specific) that you might think could be written better i'de appreciate it.
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object ReverseFile {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Reverse File")
conf.set("spark.hadoop.validateOutputSpecs", "false")
val sc = new SparkContext(conf)
val txtFile = "path/README_mid.md"
val txtData = sc.textFile(txtFile)
txtData.cache()
val reversed = txtData
.zipWithIndex()
.map(_.swap)
.sortByKey(ascending = false)
.map(_._2) // No need to deconstruct the tuple.
// No need for the coalesce, spark should do that by itself.
reversed.saveAsTextFile("path/reversed.md")
// Reuse txtData here.
val wcData = txtData
.flatMap(_.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)
.map(_.swap)
.sortByKey(ascending = false)
wcData
.take(5) // Take already collects.
.foreach(println)
}
}
Always do the collect() last, so Spark can evaluate things on the cluster.
The most expensive part of your code is sorting so the obvious improvement is to remove it. It is relatively simple in the second case where full sort is completely obsolete:
val wcData = txtData
.flatMap(_.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _) // No need to swap or sort
// Use top method and explicit ordering in place of swap / sortByKey
val wcData = top(5)(scala.math.Ordering.by[(String, Int), Int](_._2))
Reversing order of lines is a little bit trickier. First lets reorder elements per partition:
val reversedPartitions = txtData.mapPartitions(_.toList.reverse.toIterator)
Now you have two options
use custom partitioner
class ReversePartitioner(n: Int) extends Partitioner {
def numPartitions: Int = n
def getPartition(key: Any): Int = {
val k = key.asInstanceOf[Int]
return numPartitions - 1 - k
}
}
val partitioner = new ReversePartitioner(reversedPartitions.partitions.size)
val reversed = reversedPartitions
// Add current partition number
.mapPartitionsWithIndex((i, iter) => Iterator((i, iter.toList)))
// Repartition to get reversed order
.partitionBy(partitioner)
// Drop partition numbers
.values
// Reshape
.flatMap(identity)
It still requires shuffling but it is relatively portable and data is still accessible in memory.
if all you want is to save reversed data you can call saveAsTextFile on reversedPartitions and reorder output files logically. Since part-n name format identifies source partitions all you have to do is to rename part-n to part-(number-of-partitions - 1 -n). It requires saving data so it is not exactly optimal but if you for example use in-memory file system can be a pretty good solution.
edit 2
Indirectly solved the problem by repartitioning the RDD into 8 partitions. Hit a roadblock with avro objects not being "java serialisable" found a snippet here to delegate avro serialisation to kryo. The original problem still remains.
edit 1: Removed local variable reference in map function
I'm writing a driver to run a compute heavy job on spark using parquet and avro for io/schema. I can't seem to get spark to use all my cores. What am I doing wrong ? Is it because I have set the keys to null ?
I am just getting my head around how hadoop organises files. AFAIK since my file has a gigabyte of raw data I should expect to see things parallelising with the default block and page sizes.
The function to ETL my input for processing looks as follows :
def genForum {
class MyWriter extends AvroParquetWriter[Topic](new Path("posts.parq"), Topic.getClassSchema) {
override def write(t: Topic) {
synchronized {
super.write(t)
}
}
}
def makeTopic(x: ForumTopic): Topic = {
// Ommited to save space
}
val writer = new MyWriter
val q =
DBCrawler.db.withSession {
Query(ForumTopics).filter(x => x.crawlState === TopicCrawlState.Done).list()
}
val sz = q.size
val c = new AtomicInteger(0)
q.par.foreach {
x =>
writer.write(makeTopic(x))
val count = c.incrementAndGet()
print(f"\r${count.toFloat * 100 / sz}%4.2f%%")
}
writer.close()
}
And my transformation looks as follows :
def sparkNLPTransformation() {
val sc = new SparkContext("local[8]", "forumAddNlp")
// io configuration
val job = new Job()
ParquetInputFormat.setReadSupportClass(job, classOf[AvroReadSupport[Topic]])
ParquetOutputFormat.setWriteSupportClass(job,classOf[AvroWriteSupport])
AvroParquetOutputFormat.setSchema(job, Topic.getClassSchema)
// configure annotator
val props = new Properties()
props.put("annotators", "tokenize,ssplit,pos,lemma,parse")
val an = DAnnotator(props)
// annotator function
def annotatePosts(ann : DAnnotator, top : Topic) : Topic = {
val new_p = top.getPosts.map{ x=>
val at = new Annotation(x.getPostText.toString)
ann.annotator.annotate(at)
val t = at.get(classOf[SentencesAnnotation]).map(_.get(classOf[TreeAnnotation])).toList
val r = SpecificData.get().deepCopy[Post](x.getSchema,x)
if(t.nonEmpty) r.setTrees(t)
r
}
val new_t = SpecificData.get().deepCopy[Topic](top.getSchema,top)
new_t.setPosts(new_p)
new_t
}
// transformation
val ds = sc.newAPIHadoopFile("forum_dataset.parq", classOf[ParquetInputFormat[Topic]], classOf[Void], classOf[Topic], job.getConfiguration)
val new_ds = ds.map(x=> ( null, annotatePosts(x._2) ) )
new_ds.saveAsNewAPIHadoopFile("annotated_posts.parq",
classOf[Void],
classOf[Topic],
classOf[ParquetOutputFormat[Topic]],
job.getConfiguration
)
}
Can you confirm that the data is indeed in multiple blocks in HDFS? The total block count on the forum_dataset.parq file