MongoDB fast deletion best approach - mongodb

My application currently use MySQL. In order to support very fast deletion, I organize my data in partitions, according to timestamp. Then when data becomes obsolete, I just drop the whole partition.
It works great, and cleaning up my DB doesn't harm my application performance.
I would want to replace MySQL with MongoDB, and I'm wondering if there's something similiar in MongoDB, or would I just need to delete the records one by one (which, I'm afraid, will be really slow and will make my DB busy, and slow down queries response time).

In MongoDB, if your requirement is to delete data to limit the collection size, you should use a capped collection.
On the other hand, if your requirement is to delete data based on a timestamp, then a TTL index might be exactly what you're looking for.
From official doc regarding capped collections:
Capped collections automatically remove the oldest documents in the collection without requiring scripts or explicit remove operations.
And regarding TTL indexes:
Implemented as a special index type, TTL collections make it possible to store data in MongoDB and have the mongod automatically remove data after a specified period of time.

I thought, even though I am late and an answer has already been accepted, I would add a little more.
The problem with capped collections is that they regularly reside upon one shard in a cluster. Even though, in latter versions of MongoDB, capped collections are shardable they normally are not. Adding to this a capped collection MUST be allocated on the spot, so if you wish to have a long history before clearing the data you might find your collection uses up significantly more space than it should.
TTL is a good answer however it is not as fast as drop(). TTL is basically MongoDB doing the same thing, server-side, that you would do in your application of judging when a row is historical and deleting it. If done excessively it will have a detrimental effect on performance. Not only that but it isn't good at freeing up space to your $freelists which is key to stopping fragmentation in MongoDB.
drop()ing a collection will literally just "drop" the collection on the spot, instantly and gracefully giving that space back to MongoDB (not the OS) giving you absolutely no fragmentation what-so-ever. Not only that but the operation is a lot faster, 90% of the time, than most other alternatives.
So I would stick by my comment:
You could factor the data into time series collections based on how long it takes for data to become historical, then just drop() the collection
Edit
As #Zaid pointed out, even with the _id field capped collections are not shardable.

One solution to this is using TokuMX which supports partitioning:
https://www.percona.com/blog/2014/05/29/introducing-partitioned-collections-for-mongodb-applications/
Advantages over capped collections: capped collections use a fixed amount of space (even when you don't have this much data) and they can't be resized on-the-fly. Partitioned collections usage depends on data; you can add and remove partitions (for newly inserted data) as you see fit.
Advantages over TTL: TTL is slow, it just takes care of removing old data automatically. Partitions are fast - removing data is basically just a file removal.
HOWEVER: after getting acquired by Percona, development of TokuMX appears to have stopped (would love to be corrected on this point). Unfortunately MongoDB doesn't support this functionality and with TokuMX on its way out it looks like we will be stranded without proper solution.

Related

how to choose best mechanism for delete logs saved to mongodb

I'm implementing a logger using MongoDB and I'm quite new to the concept.
The logger is supposed to log each request and Its response.
I'm facing the question of using the TTL Index of mongo or just using the query overnight approach.
I think that the first method might bring some overhead by using a background thread and probably rebuilding the index after each deletion but, it frees space as soon as the documents expire and this might be beneficial.
The second approach, on the other hand, does not have this kind of overhead but it frees up space just at the end of each day.
It seems to me that the second approach will suit my case better as it would not be the case that my server just goes on the edge of not having enough disk space, but it will always be the case that we need to reduce the overhead on the server.
I'm wondering if there are some aspects to the subject that I'm missing and also I'm not sure about the applications of the MongoDB TTL.
Just my opinion:
It seems to be best to store logs in monthly , daily or hourly collection depends on your applications write load , and at the end of the day to just drop() the oldest collections with custom script. From experience TTL indices not working well when there is heavy write load to your collection since they add additional write load based on expiration time.
For example imagine you insert at 06:00h log events with 100k/sec and your TTL index life time is set to 3h , this mean after 3h at 09:00h you will have those 100k/sec deletes applied to your collection that are also stored in the oplog ... , solution in such cases is to add more shards , but it become kind of expensive... , far easier is to just drop the exprired collection ...
Moreover depending on your project size for bigger collections to speed up searches you can additionally shard and pre-split the collections based on compound index hashed datetime field(every log contain timestamp) with another field which you will search often and this will allow you scalable search across multiple distributed shards.
Also note mongoDB is a general purpose document database and fulltext search is kind of limited to expensinve regex expressions , so in case you need to do fast raw fulltext search in your logs some inverse index search engine like elasticsearch on top of your mongoDB backand maybe a good solution to cover this functionality.

TTL index on oplog or reducing the size of oplog?

I am using mongodb with elasticsearch for my application. Elasticsearch creates indexes by monitioring oplog collection. When both the applications are running constantly then any changes to the collections in mongodb are immediately indexed. The only problem I face is if for some reason I had to delete and recreate the index then it takes ages(2days) for the indexing to complete.
When I was looking at the size of my oplog by default it's capacity is 40gb and its holding around 60million transactions because of which creating a fresh index is taking a long time.
What would be the best way to optimize fresh index creation?
Is it to reduce the size of oplog so that it holds less number of transactions and still not affect my replication or is it possible to create a ttl index(which I failed to do on several attempts) on oplog.
I am using elasticsearch with mongodb using mongodb river https://github.com/richardwilly98/elasticsearch-river-mongodb/.
Any help to overcome the above mentioned issues is appreciated.
I am not a Elastic Search Pro but your question:
What would be the best way to optimize fresh index creation?
Does apply a little to all who use third party FTS techs with MongoDB.
The first thing to note is that if you have A LOT of records then there is no easy way around this unless you are prepared to lose some of them.
The oplog isn't really a good idea for this, you should probably seek out using a custom script using timers in the main collection to do this personally, or a change table giving you a single place to quickly query for new or updated records.
Unless you are filtering the oplog to get specific records, i.e. inserts, then you could be pulling out ALL oplog records including deletes, collection operations and even database operations. So you could try stripping out unneeded records from your oplog search, however, this then creates a new problem; the oplog has no indexes or index updating.
This means that if you start to read in a manner more appropiate you will actually use an unindexed query over these 60 million records. This will result in slow(er) performance.
The oplog having no index updating answers another one of your questions:
is it possible to create a ttl index(which I failed to do on several attempts) on oplog.
Nope.
As for the other one of your questions:
Is it to reduce the size of oplog so that it holds less number of transactions
Yes, but you will have a smaller recovery window of replication and not only that but you will lose records from your "fresh" index so only a part of your data is actually indexed. I am unsure, from your question, if this is a problem or not.
You can reduce the oplog for a single secondary member that no replica is synching from. Look up rs.syncFrom and "Change the Size of the Oplog" in the mongodb docs.

MongoDB: BIllions of documents in a collection

I need to load 6.6 billion bigrams into a collection but I can't find any information on the best way to do this.
Loading that many documents onto a single primary key index would take forever but as far as I'm aware mongo doesn't support the equivalent of partitioning?
Would sharding help? Should I try and split the data set over many collections and build that logic into my application?
It's hard to say what the optimal bulk insert is -- this partly depends on the size of the objects you're inserting and other immeasurable factors. You could try a few ranges and see what gives you the best performance. As an alternative, some people like using mongoimport, which is pretty fast, but your import data needs to be json or csv. There's obviously mongodrestore, if the data is in BSON format.
Mongo can easily handle billions of documents and can have billions of documents in the one collection but remember that the maximum document size is 16mb. There are many folk with billions of documents in MongoDB and there's lots of discussions about it on the MongoDB Google User Group. Here's a document on using a large number of collections that you may like to read, if you change your mind and want to have multiple collections instead. The more collections you have, the more indexes you will have also, which probably isn't what you want.
Here's a presentation from Craigslist on inserting billions of documents into MongoDB and the guy's blogpost.
It does look like sharding would be a good solution for you but typically sharding is used for scaling across multiple servers and a lot of folk do it because they want to scale their writes or they are unable to keep their working set (data and indexes) in RAM. It is perfectly reasonable to start off with a single server and then move to a shard or replica-set as your data grows or you need extra redundancy and resilience.
However, there are other users use multiple mongods to get around locking limits of a single mongod with lots of writes. It's obvious but still worth saying but a multi-mongod setup is more complex to manage than a single server. If your IO or cpu isn't maxed out here, your working set is smaller than RAM and your data is easy to keep balanced (pretty randomly distributed), you should see improvement (with sharding on a single server). As a FYI, there is potential for memory and IO contention. With 2.2 having improved concurrency with db locking, I suspect that there will be much less of a reason for such a deployment.
You need to plan your move to sharding properly, i.e. think carefully about choosing your shard key. If you go this way then it's best to pre-split and turn off the balancer. It will be counter-productive to be moving data around to keep things balanced which means you will need to decide up front how to split it. Additionally, it is sometimes important to design your documents with the idea that some field will be useful for sharding on, or as a primary key.
Here's some good links -
Choosing a Shard Key
Blog post on shard keys
Overview presentation on sharding
Presentation on Sharding Best Practices
You can absolutely shard data in MongoDB (which partitions across N servers on the shard key). In fact, that's one of it's core strengths. There is no need to do that in your application.
For most use cases, I would strongly recommend doing that for 6.6 billion documents. In my experience, MongoDB performs better with a number of mid-range servers rather than one large one.

Is there any way to register a callback for deletions in a capped collection in Mongo?

I want to use a capped collection in Mongo, but I don't want my documents to die when the collection loops around. Instead, I want Mongo to notice that I'm running out of space and move the old documents into another, permanent collection for archival purposes.
Is there a way to have Mongo do this automatically, or can I register a callback that would perform this action?
You shouldn't be using a capped collection for this. I'm assuming you're doing so because you want to keep the amount of "hot" data relatively small and move stale data to a permanent collection. However, this is effectively what happens anyway when you use MongoDB. Data that's accessed often will be in memory and data that is used less often will not be. Same goes for your indexes if they remain right-balanced. I would think you're doing a bit of premature optimization or at least have a suboptimal schema or index strategy for your problem. If you post exactly what you're trying to achieve and where your performance takes a dive I can have a look.
To answer your actual question; MongoDB does not have callbacks or triggers. There are some open feature requests for them though.
EDIT (Small elaboration on technical implementation) : MongoDB is built on top of memory mapped files for it's storage engine. It basically means it's an LRU based cache of "hot" data where data in this case can be both actual data and index data. As a result data and associated index data you access often (in your case the data you'd typically have in your capped collection) will be in memory and thus very fast to query. In typical use cases the performance difference between having an "active" collection and an "archive" collection and just one big collection should be small. As you can imagine having more memory available to the mongod process means more data can stay in memory and as a result performance will improve. There are some nice presentations from 10gen available on mongodb.org that go into more detail and also provide detail on how to keep indexes right balanced etc.
At the moment, MongoDB does not support triggers at all. If you want to move documents away before they reach the end of the "cap" then you need to monitor the data usage yourself.
However, I don't see why you would want a capped collection and also still want to move your items away. If you clarify that in your question, I'll update the answer.

Is it practical to use Mongo's capped collection a memory cache?

Is it practical to use Mongo's capped collections as poor man's memcache assuming it will be kept in memory most of the time?
You can definitely use capped collections for this purpose. But it's important to know the basic limitations.
Data will expire based on insert order not time-to-expire
Data that is frequently accessed may still be pushed out of memory
_id columns are not defined on Capped Collections by default, you will need to ensure those indexes.
The objects cannot be modified in a way that changes the size of the object. For example, you could increment an existing integer, but you cannot add a field or modify a string value on the entry.
The capped collections cannot be sharded.
Because of #1 & #4 & #5, you are definitely losing some the core Memcache functionality.
There is a long-outstanding JIRA ticket for TTL-based capped collections which is probably exactly what you want.
Of course, the big question in this whole debate is "where is the extra RAM". Many people who use MongoDB as their primary store simply drop Memcache. If you have a bunch of extra RAM sitting around, why not just use it store the actual data instead of copies of that data?
Yes. This is a perfectly acceptable use of a MongoDB capped collection. I am assuming you will have many more reads than writes, so make sure you use an index as well.
MongoDB Capped Collections: Applications
As said by Gates VP, capped collections are usable and easy to manage. However you can also use non-capped collections if you :
have a dedicated server for your "poor's man memcache"
have a lot of data, which cannot fit on one server (or you want to query very fast)
are ok with dealing with TTL yourself (just add one field)
MongoDB cache (mmap on Unix-like systems) will provides a "unlimited" memcache, caching frequently accessed values.
As said on the mongo FAQ page :
The goal is for Mongo to be an alternative to an ORM/memcached/mysql stack