I created a generic repository class that all my other repository classes are inheriting from. This is great, because it means almost all the plumbing is done one time for all repositories. I put a full explanation of what I'm talking about here, but here is the code for my GenericRepository (some code is removed for brevity):
public abstract class GenericRepository<T> : IGenericRepository<T> where T : class, new()
{
private IMyDbContext _myDbContext;
public GenericRepository(IMyDbContext myDbContext)
{
_myDbContext = myDbContext;
}
protected IMyDbContext Context
{
get
{
return _myDbContext;
}
}
public IQueryable<T> AsQueryable()
{
IQueryable<T> query = Context.Set<T>();
return query;
}
public virtual void Create(T entity)
{
Context.Set<T>().Add(entity);
}
public virtual void Update(T entity)
{
Context.Entry(entity).State = System.Data.EntityState.Modified;
}
}
As you see, I have a Create method and an Update method. It would be very convenient to have a "CreateOrUpdate" method, so I don't have to manually check for existing objects each time I have to save something to the database.
Each of my objects in Entity Framework have an "Id", but the challenge here is that the GenericRepository works with "T".
Now, with that rather long introduction, to my specific question.
How do I create a generic CreateOrUpdate method for my GenericRepository?
UPDATE
After Marcins response, I implemented the following generic methods in my GenericRepository. It will take some time before I can test that it works as expected, but it looks very promising.
public virtual bool Exists(Guid id)
{
return Context.Set<T>().Any(t => t.Id == id);
}
public virtual void CreateOrUpdate(T entity)
{
if (Exists(entity.Id))
{
var oldEntity = GetSingle(entity.Id);
Context.Entry(oldEntity).CurrentValues.SetValues(entity);
Update(oldEntity);
}
else
{
Create(entity);
}
}
The code above has no less than 3 roundtrips to the database when updating. I'm sure it can be optimized, but it wasn't really the exercise for this question.
This question handles that topic better:
An object with the same key already exists in the ObjectStateManager. The ObjectStateManager cannot track multiple objects with the same key
Create a interface with Id property, implement it on every of your entities and add another generic constraint to your class:
public interface IEntity
{
int Id { get; set;}
}
And
public abstract class GenericRepository<T> : IGenericRepository<T> where T : class, IEntity, new()
With that, you'll be able to use Id property within your generic repository class.
Of course - Id don't have to be an int, it can be Guid as well.
Related
Ok, I might be punching above my pay grade here, but I'm trying to create a generic CRUD routine for and EF project. I've got most of it working but I'm flailing around on one point.
Normally you do something like this to add an entity through a context-
DBContext.MyClass.Add( p ); // p = instance of MyClass
That works fine, but since in a global method to handle all adds regardless of what class they are I'm passing in a Model as an object it would look more like this-
DBContext<whateverobject>.Add(whateverobject); // my objects is an object param passed into the method
I've tried doing a bunch of typeofs and there where T : class stuff but I'm having no luck. Any pointing in the right direction would help me out.
I'm using EF Core 2 so my options might also be more limited than EF 6.
Thanks.
The method you're looking for is DbContext's Set<T>()
Your generic repository for your generic CRUD would look something like this:
public class Repo<T> where T: class
{
private readonly DbSet<T> _set;
public Repo(DbContext dbContext)
{
_set = dbContext.Set<T>();
}
public void Add(T entity) => _set.Add(entity);
}
This example includes a maybe unusual thing:
where T: class: we have to specify that T has to be a reference type because DbSet<T> expects T to be a reference type
For generic querying you might want to use extension methods.
In order to implement a ById method you'd have to specify that the type T must have an Id property using an interface. That would look something like this:
public interface IEntity
{
int Id { get; set; }
}
public class User : IEntity
{
public int Id { get; set; }
}
public static class DbSetExtensions
{
public static T ById<T>(this DbSet<T> dbSet, int id) where T: class =>
dbSet.FirstOrDefault(entity => entity.Id == id);
}
I'd like to create a generic C# class with a method that will add a row to a database using Entity Framework.
I have one table called Address. I've written the following code to add an address to the database:
public class AddressExchange
{
public int Insert(Address address)
{
using (var db = new DemoWebEntities())
{
//db.AddObject("Address", address);
db.Addresses.AddObject(address);
db.SaveChanges();
return address.Id;
}
}
}
I would like to write a generic class that will perform this operation for any entity in my EDMX. I think that it should look something like this:
public class EntityExchange<T, KeyType>
{
public KeyType Insert(T t)
{
using (var db = new DemoWebEntities())
{
// The entity set name might be wrong.
db.AddObject(typeof(T).Name, t);
// EF doesn't know what the primary key is.
return t.Id;
}
}
}
I think it may be possible to use the AddObject method to add the object to the database, but the entityset name is not necessarily the same as the type name, especially if it has been pluralized!
I also want to return the primary key to the caller, but I don't know how to tell which field contains the primary key.
I have a generic InsertOrUpdate method in a generic repository that also ensures proxies are created. (Proxies are required to support lazy loading and if you create an entity using "new", then proxies are not created). See the question here
public class RepositoryBase<T> : IRepository<T> where T : ModelBase
{
public virtual T InsertOrUpdate(T e)
{
DbSet<T> dbSet = context.Set<T>();
//Generate a proxy type to support lazy loading
T instance = dbSet.Create();
DbEntityEntry<T> entry;
if (e.GetType().Equals(instance.GetType()))
{
//The entity being added is already a proxy type that
//supports lazy loading just get the context entry
entry = context.Entry(e);
}
else
{
//The entity being added has been created using the "new" operator.
//Attach the proxy
//Need to set the ID before attaching or we get
//The property 'ID' is part of the object's key
//information and cannot be modified when we call SetValues
instance.ID = e.ID;
entry = context.Entry(instance);
dbSet.Attach(instance);
//and set it's values to those of the entity
entry.CurrentValues.SetValues(e);
e = instance;
}
entry.State = e.ID == default(int) ?
EntityState.Added :
EntityState.Modified;
return e;
}
}
public abstract class ModelBase
{
public int ID { get; set; }
}
Note that all the models inherit ModelBase so that handles the ID issue and I return the entity rather than just the ID. That is probably not strictly necessary since a reference to the entity is passed in and EF performs fixup on the ID anyway so you can always access it from the refernce passed in.
This might be reliant on a particular version on Entity framework however this is how I do it
public void Create(T entity)
{
using (var db = new DemoWebEntities())
{
db.Set<T>().Add(entity);
}
}
For the primary key issue, can you use partial classes to make your entities implement an interface, something like this:
public interface IEntity
{
Guid PrimaryKey { get; }
}
Your entity classes would then return the appropriate value:
public partial class EntityType : IEntity
{
public Guid PrimaryKey
{
get
{
return this.WhateverId; // Return the primary key
}
}
}
Then, constrain your method to only accept IEntity:
public class EntityExchange<T, KeyType> where T : IEntity
And finally return the primary key after the insert:
return t.PrimaryKey;
May be it can help you.
public T Add(T model)
{
using (BigConceptEntities entity = new BigConceptEntities())
{
entity.Set<T>().Add(model);
entity.SaveChanges();
return model;
}
}
I have a repository like that:
public class Repository<T> : IRepository<T> where T : class
{
private readonly IRepositoryContext _repositoryContext;
public Repository(IRepositoryContext repositoryContext)
{
_repositoryContext = repositoryContext;
_objectSet = repositoryContext.GetObjectSet<T>();
}
public virtual void Update(T entity)
{
ObjectSet.AddObject(entity);
_repositoryContext.ObjectContext.ObjectStateManager.ChangeObjectState(entity, EntityState.Modified);
_repositoryContext.SaveChanges();
}
}
Now that actually works for all scalar properties of the entity, but all the other entities that associated with properties of entity typeOf(T), don't care that entity state is modified, and EF simply adds new data.
So, if you do for example Repository<Student>.Update(), and you only changed the name, it will find the right Student and change his name, but it also will change the Campus, although you already have a Campus associated with that student, it will be created again with a different CampusId.
Show me please the correct way to do updates in this situation.
What I did when I wanted to follow generic approach was translated to your code something like:
public class Repository<T> : IRepository<T> where T : class
{
...
public virtual void Update(T entity)
{
if (context.ObjectStateManager.GetObjectStateEntry(entity).State == EntityState.Detached)
{
throw new InvalidOperationException(...);
}
_repositoryContext.SaveChanges();
}
}
All my code then worked like:
var attachedEntity = repository.Find(someId);
// Merge all changes into attached entity here
repository.Update(attachedEntity);
=> Doing this in generic way moves a lot of logic into your upper layer. There is no better way how to save big detached object graphs (especially when many-to-many relations are involved and deleting of relations is involved).
I'm trying to get a repository pattern working with MVC2 and EF.
My problem is within the concrete repository. When I attempt to cast the EF query results as an IEnumerable collection of view-model entities:
Unable to cast object of type
'System.Data.Objects.ObjectQuery`1[Data_Service.MediaReleases]'
to type
'System.Collections.Generic.IEnumerable`1[TestMVCWithFacory.Models.Entities.MediaReleaseModel]'.
I sense that's a bone-headed thing to try to do -- and it's something with Linq, and how deferred execution works, but I don't really understand the voodoo.
So what is it that I'm mis-understanding there, and how do I address it?
The view-model:
public class MediaReleaseModel
{
public string Headline { get; set; }
public string FullText { get; set; }
}
The repository interface:
public interface IMediaReleasesRepository
{
IEnumerable<MediaReleaseModel> MediaReleases { get;}
}
The concrete repository:
public class MediaReleaseRepository : IMediaReleasesRepository
{
private NewsEntities DataContext = new NewsEntities();
private IEnumerable<MediaReleases> _MRs;
public MediaReleaseRepository()
{
_MRs = from art in DataContext.MediaReleases select art;
}
public IEnumerable<MediaReleaseModel> MediaReleases
{
get { return (IEnumerable<MediaReleaseModel>)_MRs; }
}
}
Controller:
public class HomeController : Controller
{
private IMediaReleasesRepository _MRRepository;
public HomeController()
{
_MRRepository= new MediaReleaseRepository();
}
public ViewResult index()
{
return View(_MRRepository.MediaReleases.ToList());
}
}
You're trying to cast collection of MediaReleases to collection of MediaReleaseModels. If MediaReleaseModel is a separate class, this can't be done just by casting. Generally, cast will succeed only in one inheritance chain or when conversion operators are defined, which is not the case here.
What you need here is rewriting the MediaRelease fields to you model object (it can be automated using tools like AutoMapper), i.e. with help of LINQ:
public IEnumerable<MediaReleaseModel> MediaReleases
{
get
{
return _MRs.Select(x => new MediaReleaseModel()
{
Prop1 = x.Prop1
/* etc. */
});
}
}
One suggestion at the side: it's better not to have logic like that in constructor, creating objects should be cheap operation and it's a bit strange when the data are fetched before they are really needed.
My domain classes that have one-to-many mappings generally take the following form (untested code):
public Customer Customer
{
// Public methods.
public Order AddOrder(Order order)
{
_orders.Add(order);
}
public Order GetOrder(long id)
{
return _orders.Where(x => x.Id).Single();
}
// etc.
// Private fields.
private ICollection<Order> _orders = new List<Order>();
}
The EF4 code-only samples I've seen expose a public ICollection when dealing with one-to-many relationships.
Is there a way to persist and restore my collections with exposing them? If not, it would appear that my domain objects will be designed to meet the requirements of the ORM, which seems to go against the spirit of the endeavour. Exposing an ICollection (with it's Add, etc. methods) doesn't seem particularly clean, and wouldn't be my default approach.
Update
Found this post that suggests it wasn't possible in May. Of course, the Microsoft poster did say that they were "strongly considering implementing" it (I'd hope so) and we're half a year on, so maybe there's been some progress?
I found that whatever was done, EF requires the ICollection<T> to be public. I think this is because when the objects are loaded from the database, the mapping looks for a collection property, gets the collection and then calls the Add method of the collection to add each of the child objects.
I wanted to ensure that the addition was done through a method on the parent object so created a solution of wrapping the collection, catching the add and directing it to my preferred method of addition.
Extending a List and other collection types was not possible because the Add method is not virtual. One option is to extend Collection class and override the InsertItem method.
I have only focussed on the Add, Remove, and Clear functions of the ICollection<T> interface as those are the ones that can modify the collection.
First, is my base collection wrapper which implements the ICollection<T> interface
The default behaviour is that of a normal collection. However, the caller can specify an alternative Add method to be called. In addition, the caller can enforce that the Add, Remove, Clear operations are not permitted by setting the alternatives to null. This results in NotSupportedException being thrown if anyone tries to use the method.
The throwing of an exception is not as good as preventing access in the first place. However, code should be tested (unit tested) and an exception will be found very quickly and a suitable code change made.
public abstract class WrappedCollectionBase<T> : ICollection<T>
{
private ICollection<T> InnerCollection { get { return GetWrappedCollection(); } }
private Action<T> addItemFunction;
private Func<T, bool> removeItemFunction;
private Action clearFunction;
/// <summary>
/// Default behaviour is to be like a normal collection
/// </summary>
public WrappedCollectionBase()
{
this.addItemFunction = this.AddToInnerCollection;
this.removeItemFunction = this.RemoveFromInnerCollection;
this.clearFunction = this.ClearInnerCollection;
}
public WrappedCollectionBase(Action<T> addItemFunction, Func<T, bool> removeItemFunction, Action clearFunction) : this()
{
this.addItemFunction = addItemFunction;
this.removeItemFunction = removeItemFunction;
this.clearFunction = clearFunction;
}
protected abstract ICollection<T> GetWrappedCollection();
public void Add(T item)
{
if (this.addItemFunction != null)
{
this.addItemFunction(item);
}
else
{
throw new NotSupportedException("Direct addition to this collection is not permitted");
}
}
public void AddToInnerCollection(T item)
{
this.InnerCollection.Add(item);
}
public bool Remove(T item)
{
if (removeItemFunction != null)
{
return removeItemFunction(item);
}
else
{
throw new NotSupportedException("Direct removal from this collection is not permitted");
}
}
public bool RemoveFromInnerCollection(T item)
{
return this.InnerCollection.Remove(item);
}
public void Clear()
{
if (this.clearFunction != null)
{
this.clearFunction();
}
else
{
throw new NotSupportedException("Clearing of this collection is not permitted");
}
}
public void ClearInnerCollection()
{
this.InnerCollection.Clear();
}
public bool Contains(T item)
{
return InnerCollection.Contains(item);
}
public void CopyTo(T[] array, int arrayIndex)
{
InnerCollection.CopyTo(array, arrayIndex);
}
public int Count
{
get { return InnerCollection.Count; }
}
public bool IsReadOnly
{
get { return ((ICollection<T>)this.InnerCollection).IsReadOnly; }
}
public IEnumerator<T> GetEnumerator()
{
return InnerCollection.GetEnumerator();
}
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
return InnerCollection.GetEnumerator();
}
}
Given that base class we can use it in two ways. Examples are using the original post objects.
1) Create a specific type of wrapped collection (For example, List)
public class WrappedListCollection : WrappedCollectionBase, IList
{
private List innerList;
public WrappedListCollection(Action<T> addItemFunction, Func<T, bool> removeItemFunction, Action clearFunction)
: base(addItemFunction, removeItemFunction, clearFunction)
{
this.innerList = new List<T>();
}
protected override ICollection<T> GetWrappedCollection()
{
return this.innerList;
}
<...snip....> // fill in implementation of IList if important or don't implement IList
}
This can then be used:
public Customer Customer
{
public ICollection<Order> Orders {get { return _orders; } }
// Public methods.
public void AddOrder(Order order)
{
_orders.AddToInnerCollection(order);
}
// Private fields.
private WrappedListCollection<Order> _orders = new WrappedListCollection<Order>(this.AddOrder, null, null);
}
2) Give a collection to be wrapped using
public class WrappedCollection<T> : WrappedCollectionBase<T>
{
private ICollection<T> wrappedCollection;
public WrappedCollection(ICollection<T> collectionToWrap, Action<T> addItemFunction, Func<T, bool> removeItemFunction, Action clearFunction)
: base(addItemFunction, removeItemFunction, clearFunction)
{
this.wrappedCollection = collectionToWrap;
}
protected override ICollection<T> GetWrappedCollection()
{
return this.wrappedCollection;
}
}
which can be used as follows:
{
public ICollection Orders {get { return _wrappedOrders; } }
// Public methods.
public void AddOrder(Order order)
{
_orders.Add(order);
}
// Private fields.
private ICollection<Order> _orders = new List<Order>();
private WrappedCollection<Order> _wrappedOrders = new WrappedCollection<Order>(_orders, this.AddOrder, null, null);
}
There are some other ways to call the WrappedCollection constructors
For example, to override add but keep remove and clear as normal
private WrappedListCollection<Order> _orders = new WrappedListCollection(this.AddOrder, (Order o) => _orders.RemoveFromInnerCollection(o), () => _orders.ClearInnerCollection());
I agree that it would be best if EF would not require the collection to be public but this solution allows me to control the modification of my collection.
For the problem of preventing access to the collection for querying you can use approach 2) above and set the WrappedCollection GetEnumerator method to throw a NotSupportedException. Then your GetOrder method can stay as it is. A neater method however may be to expose the wrapped collection. For example:
public class WrappedCollection<T> : WrappedCollectionBase<T>
{
public ICollection<T> InnerCollection { get; private set; }
public WrappedCollection(ICollection<T> collectionToWrap, Action<T> addItemFunction, Func<T, bool> removeItemFunction, Action clearFunction)
: base(addItemFunction, removeItemFunction, clearFunction)
{
this.InnerCollection = collectionToWrap;
}
protected override ICollection<T> GetWrappedCollection()
{
return this.InnerCollection;
}
}
Then the call in the GetOrder method would become
_orders.InnerCollection.Where(x => x.Id == id).Single();
Another way to accomplish this would be to create an associated interface for each of your POCOs to expose only what you want outside of the persistence/domain layers. You can also interface your DbContext class to also hide and control access to the DbSet collections. As it turns out, the DbSet properties can be protected, and the model builder will pick them up when it's creating tables, but when you try to access the collections they will be null. A factory method (in my example, CreateNewContext) can be used instead of the constructor to get the interfaced DbContext to conceal the DbSet collections.
There's quite a bit of extra effort in coding, but if hiding implementation details within the POCOs is important, this will work.
UPDATE: It turns out you CAN populate DBSets if they are protected, but not directly in the DBContext. They can't be aggregate roots (i.e. accessibility of the entity has to be through a collection in one of the public DBSet entities). If hiding the implementation of DBSet is important, the interface pattern I've described is still relevant.
public interface ICustomer
{
void AddOrder(IOrder order);
IOrder GetOrder(long id);
}
public Customer : ICustomer
{
// Exposed methods:
void ICustomer.AddOrder(IOrder order)
{
if (order is Order)
orders.Add((Order)order);
else
throw new Exception("Hey! Not a mapped type!");
}
IOrder ICustomer.GetOrder(long id)
{
return orders.Where(x => x.Id).Single();
}
// public collection for EF
// The Order class definition would follow the same interface pattern illustrated
// here for the Customer class.
public ICollection<Order> orders = new List<Order>();
}
public interface IMyContext
{
IEnumerable<ICustomer> GetCustomers();
void AddCustomer(ICustomer customerObject);
ICustomer CreateNewCustomer()
}
public class MyContext : DbContext, IMyContext
{
public static IMyContext CreateNewContext() { return new MyContext(); }
public DbSet<Customer> Customers {get;set;}
public DbSet<Order> Orders {get;set;}
public IEnumerable<ICustomer> GetCustomers()
{
return Customers;
}
public void AddCustomer(ICustomer customerObject)
{
if (customerObject is Customer)
Customers.Add((Customer)customerObject);
else
throw new Exception("Hey! Not a mapped type");
}
public ICustomer CreateNewCustomer()
{
return Customers.Create();
}
// wrap the Removes, Finds, etc as necessary. Remember to add these to the
// DbContext's interface
// Follow this pattern also for Order/IOrder
}
If you change the name of your _orders collection to the name of the orders table in your database, this should work. EF maps table/field names to collections/properties by convention. If you want to use a different name you could edit the mappings in the edmx file.
AFAIK you can just leave the private modifier as it is. Collections do not need to be public.