How to create generic EF Insert method? - entity-framework

I'd like to create a generic C# class with a method that will add a row to a database using Entity Framework.
I have one table called Address. I've written the following code to add an address to the database:
public class AddressExchange
{
public int Insert(Address address)
{
using (var db = new DemoWebEntities())
{
//db.AddObject("Address", address);
db.Addresses.AddObject(address);
db.SaveChanges();
return address.Id;
}
}
}
I would like to write a generic class that will perform this operation for any entity in my EDMX. I think that it should look something like this:
public class EntityExchange<T, KeyType>
{
public KeyType Insert(T t)
{
using (var db = new DemoWebEntities())
{
// The entity set name might be wrong.
db.AddObject(typeof(T).Name, t);
// EF doesn't know what the primary key is.
return t.Id;
}
}
}
I think it may be possible to use the AddObject method to add the object to the database, but the entityset name is not necessarily the same as the type name, especially if it has been pluralized!
I also want to return the primary key to the caller, but I don't know how to tell which field contains the primary key.

I have a generic InsertOrUpdate method in a generic repository that also ensures proxies are created. (Proxies are required to support lazy loading and if you create an entity using "new", then proxies are not created). See the question here
public class RepositoryBase<T> : IRepository<T> where T : ModelBase
{
public virtual T InsertOrUpdate(T e)
{
DbSet<T> dbSet = context.Set<T>();
//Generate a proxy type to support lazy loading
T instance = dbSet.Create();
DbEntityEntry<T> entry;
if (e.GetType().Equals(instance.GetType()))
{
//The entity being added is already a proxy type that
//supports lazy loading just get the context entry
entry = context.Entry(e);
}
else
{
//The entity being added has been created using the "new" operator.
//Attach the proxy
//Need to set the ID before attaching or we get
//The property 'ID' is part of the object's key
//information and cannot be modified when we call SetValues
instance.ID = e.ID;
entry = context.Entry(instance);
dbSet.Attach(instance);
//and set it's values to those of the entity
entry.CurrentValues.SetValues(e);
e = instance;
}
entry.State = e.ID == default(int) ?
EntityState.Added :
EntityState.Modified;
return e;
}
}
public abstract class ModelBase
{
public int ID { get; set; }
}
Note that all the models inherit ModelBase so that handles the ID issue and I return the entity rather than just the ID. That is probably not strictly necessary since a reference to the entity is passed in and EF performs fixup on the ID anyway so you can always access it from the refernce passed in.

This might be reliant on a particular version on Entity framework however this is how I do it
public void Create(T entity)
{
using (var db = new DemoWebEntities())
{
db.Set<T>().Add(entity);
}
}

For the primary key issue, can you use partial classes to make your entities implement an interface, something like this:
public interface IEntity
{
Guid PrimaryKey { get; }
}
Your entity classes would then return the appropriate value:
public partial class EntityType : IEntity
{
public Guid PrimaryKey
{
get
{
return this.WhateverId; // Return the primary key
}
}
}
Then, constrain your method to only accept IEntity:
public class EntityExchange<T, KeyType> where T : IEntity
And finally return the primary key after the insert:
return t.PrimaryKey;

May be it can help you.
public T Add(T model)
{
using (BigConceptEntities entity = new BigConceptEntities())
{
entity.Set<T>().Add(model);
entity.SaveChanges();
return model;
}
}

Related

generalize dbcontext AddOrUpdate

My code :
public class BaseController
{
public object AddUpdate(object obj)
{
using (var db = new StoreModel())
{
string nameObj = obj.ToString().Substring(obj.ToString().LastIndexOf(".") + 1);
var property = db.GetType().GetProperty(nameObj);
((DbSet<CrmTicket>)property.GetValue(db)).AddOrUpdate((CrmTicket)obj);
db.SaveChanges();
return obj;
}
}
}
I would like generalize AddOrUpdate.
This code work but it's not generic, you can see CrmTicket.
I can not put a Type in his place.
((DbSet<obj.GetType()>)property.GetValue(db)).AddOrUpdate((obj.GetType())obj);
Could you help me ?
Thank you.
You could simply use generics. There are multiple ways of doing this pretty easily. Here's one way:
public class BaseController
{
protected T AddOrUpdate<T>(T obj) where T : BaseEntity
{
if (obj == null) throw new ArgumentNullException(nameof(obj));
using (StoreModel context = new StoreModel())
{
T entity = context.Set<T>().Find(obj.Id);
// the entity doesn't exists yet, so we add it
if (entity == null)
{
context.Set<T>().Add(entity);
}
// the entity exists, so we must update it
else
{
// do you update logic, like : entity.MyString = obj.MyString
// ...
// Note : there is no need to attach the entity because the Find method has already done it.
}
// Everything is done.
context.SaveChanges();
}
return obj;
}
}
// This is your base class for all entity.
// If you want to use generics and have an AddOrUpdate method,
// you must have something to rely on where you want to check if the object you want to insert is already in Db.
public class BaseEntity
{
public int Id { get; set; } // you should configure this as an Primary Key with Identity
}
But I think this is not a good idea... With that kind of considerations, you should look at repositories: http://www.tugberkugurlu.com/archive/generic-repository-pattern-entity-framework-asp-net-mvc-and-unit-testing-triangle

How can I return the ID of the Inserted Record in Entity Framework Generic Insert Method?

Here is the generic insert method. I need your suggestion to return the ID of the inserted record.
public static void Create<T>(T entity) where T : class
{
using (var context = new InformasoftEntities())
{
DbSet dbSet = context.Set<T>();
dbSet.Add(entity);
context.SaveChanges();
}
}
Arturo Martinex is correct in his comment.
Entity framework fixes up the ID's during SaveChanges so it's already updated in the entity you passed in to the method.
To do specifically what you ask you could change your generic constraint from class to a new abstract class that all your entities inherit, which defines the key in that class.
public static int Create<T>(T entity) where T : BaseEntity
{
using (var context = new InformasoftEntities())
{
DbSet dbSet = context.Set<T>();
dbSet.Add(entity);
context.SaveChanges();
return entity.Id;
}
}
public abstract class BaseEntity
{
int Id { get; set;}
}
This technique is more useful in an InsertOrUpdate method
Another way to work with keys inside generic methods is to interrogate the MetaData as described here:
The key to AddOrUpdate
You need a little modification:
You need to create an IHasAutoID that implemented by Entity
public interface IHasAutoID {
int getAutoId();
}
In Entity Class
public class EntityA : IHasAutoID {
public int getAutoId() {
return pk; // Return -1 If the entity has NO Auto ID
}
}
In your Create function
public static int Create<T>(T entity) where T : class
{
using (var context = new InformasoftEntities())
{
DbSet dbSet = context.Set<T>();
dbSet.Add(entity);
context.SaveChanges();
if (entity is IHasAutoID) {
return ((IHasAutoID)entity).getAutoId();
}
return -1; // entity is NOT IHasAutoID)
}
}
NOTES:
If you are sure all tables have Auto ID with named "Id". You don't need to create Interface IHasAutoID. In Create function, after SaveChanges, You use REFLECTION to get value of Id property, but this way is not recommended!
public async Task<int> Add(TEntity entity)
{
await _context.Set<TEntity>().AddAsync(entity);
await Save();
return Task.FromResult(entity).Id;
}

Very generic CreateOrUpdate method with Entity Framework

I created a generic repository class that all my other repository classes are inheriting from. This is great, because it means almost all the plumbing is done one time for all repositories. I put a full explanation of what I'm talking about here, but here is the code for my GenericRepository (some code is removed for brevity):
public abstract class GenericRepository<T> : IGenericRepository<T> where T : class, new()
{
private IMyDbContext _myDbContext;
public GenericRepository(IMyDbContext myDbContext)
{
_myDbContext = myDbContext;
}
protected IMyDbContext Context
{
get
{
return _myDbContext;
}
}
public IQueryable<T> AsQueryable()
{
IQueryable<T> query = Context.Set<T>();
return query;
}
public virtual void Create(T entity)
{
Context.Set<T>().Add(entity);
}
public virtual void Update(T entity)
{
Context.Entry(entity).State = System.Data.EntityState.Modified;
}
}
As you see, I have a Create method and an Update method. It would be very convenient to have a "CreateOrUpdate" method, so I don't have to manually check for existing objects each time I have to save something to the database.
Each of my objects in Entity Framework have an "Id", but the challenge here is that the GenericRepository works with "T".
Now, with that rather long introduction, to my specific question.
How do I create a generic CreateOrUpdate method for my GenericRepository?
UPDATE
After Marcins response, I implemented the following generic methods in my GenericRepository. It will take some time before I can test that it works as expected, but it looks very promising.
public virtual bool Exists(Guid id)
{
return Context.Set<T>().Any(t => t.Id == id);
}
public virtual void CreateOrUpdate(T entity)
{
if (Exists(entity.Id))
{
var oldEntity = GetSingle(entity.Id);
Context.Entry(oldEntity).CurrentValues.SetValues(entity);
Update(oldEntity);
}
else
{
Create(entity);
}
}
The code above has no less than 3 roundtrips to the database when updating. I'm sure it can be optimized, but it wasn't really the exercise for this question.
This question handles that topic better:
An object with the same key already exists in the ObjectStateManager. The ObjectStateManager cannot track multiple objects with the same key
Create a interface with Id property, implement it on every of your entities and add another generic constraint to your class:
public interface IEntity
{
int Id { get; set;}
}
And
public abstract class GenericRepository<T> : IGenericRepository<T> where T : class, IEntity, new()
With that, you'll be able to use Id property within your generic repository class.
Of course - Id don't have to be an int, it can be Guid as well.

Handling dependent entities when deleting the principal with Entity Framework 5

Here's the situation in its most simplified form using the EF5 Code-First approach:
public abstract class EntityBase<PK>
{
public PK ID { get; set; }
}
public class Country : EntityBase<string>
{
public string Name { get; set; }
}
public class Address : EntityBase<int>
{
[Required]
public string CountryID { get; set; }
public Country Country { get; set; }
// ... other address properties ...
}
The one-to-many relationship between Address and Country is set up with no cascade-delete like so:
modelBuilder.Entity<Address>()
.HasRequired(a => a.Country)
.WithMany()
.HasForeignKey(a => a.CountryID)
.WillCascadeOnDelete(false);
Finally, I have a generic base repository class with CRUD methods that call SaveChanges on the underlying DbContext to commit data changes atomically. E.g.:
public class EFRepository<T, PK> : IRepository<T, PK> where T : EntityBase<PK>
{
//
// ... other methods ...
//
public virtual void Delete(T instance)
{
// ... trigger validations, write to log, etc...
_dbContext.Set<T>().Remove(instance);
try
{
_dbContext.SaveChanges();
}
catch(Exception ex)
{
// ... handle the error ...
}
}
}
Part 1:
Scenario:
var countryRepo = new EFRepository<Country>();
var country = countryRepo.Save(new Country() { ID="??", Name="Test Country" });
var addressRepo = new EFRepository<Address>();
var address = addressRepo.Save(new Address() { Country=country });
countryRepo.Delete(country);
This should fail due to the existence of a dependent Address. However, afterwards the address ends up with a null in CountryID, which is invalid because Address.CountryID is required, so subsequent SaveChanges calls throw a validation exception unless the address is detached.
I expected that when an object is deleted, EF5 will be smart enough to first check for any cascade-delete constraints like the one above and, failing to find any, then proceed to delete the data. But exactly the opposite seems to be the case.
Is this a normal behaviour or am I doing something wrong?
Part 2:
Following a failed SaveChanges call, some Addresses are now in an invalid state in my DbContext and need to be restored to their original values. Of course, I can always do so explicitly for each entity type (Country, State, Order, etc.) by creating specialized repository classes and overriding Delete, but it smells big time. I'd much rather write some general purpose code to gracefully recover related entities after a failed SaveChanges call.
It would require interrogating DbContext to get all relationships in which an entity (e.g. Country) is the principal, regardless of whether or not its class defines navigational properties to dependent entities.
E.g. Country has no Addresses property, so I need to somehow find in DbContext the definition of the one-to-many relationship between Country and Address and use it to restore all related Addresses to their original values.
Is this possible?
Answering my own question in Part 2:
Here is my approach to checking for related dependents when deleting an entity on the principal end of a many-to-one relationship and where dependents are NOT exposed as a navigation collection in the principal (e.g. class Address has a Country property, but class Country doesn't have an Addresses collection).
DbContext
Add the following method to the context class:
/// <summary>
/// Returns an array of entities tracked by the
/// context that satisfy the filter criteria.
/// </summary>
public DbEntityEntry[] GetTrackedEntities<T>(
Expression<Func<DbEntityEntry<T>, bool>> filterCriteria)
where T : class
{
var result = new List<DbEntityEntry>();
var doesItMatch = filterCriteria.Compile();
foreach (var entry in this.ChangeTracker.Entries<T>())
{
if (doesItMatch(entry))
result.Add(entry);
}
return result.ToArray();
}
Repositories
Create a repository for each class that has some dependencies, override the Delete method and use the new GetTrackedEntities<T> method to get all related dependents and either:
explicitly delete them if they are cascade-deletable in code
detach them from the context if they are cascade-deletable in the DB itself
throw an exception if they are NOT cascade-deletable.
Example of the latter case:
public class EFCountryRepository :
EFReadWriteRepository<Country, string>,
ICountryRepository
{
public override void Delete(Country instance)
{
// Allow the Country to be deleted only if there are no dependent entities
// currently in the context that are NOT cascade-deletable.
if (
// are there any Regions in the context that belong to this Country?
_dbContext.GetTrackedEntities<Region>(e =>
e.Entity.CountryID == instance.ID ||
e.Entity.Country == instance).Length > 0
||
// are there any Addresses in the context that belong to this Country?
_dbContext.GetTrackedEntities<Address>(e =>
e.Entity.CountryID == instance.ID ||
e.Entity.Country == instance).Length > 0
)
throw new Exception(String.Format(
"Country '{0}' is in use and cannot be deleted.", instance.ID));
base.Delete(instance);
}
// ... other methods ...
}
Example of a case where cascade-deleting will be done by the DB itself, so all we need to do is detach the dependents from the context:
public class EFOrderRepository :
EFReadWriteRepository<Order, string>,
IOrderRepository
{
public override void Delete(Order instance)
{
foreach (var orderItem in _dbContext.GetTrackedEntities<OrderItem>(e =>
e.Entity.OrderID == instance.ID ||
e.Entity.Order == instance))
{
_dbContext.Entry(orderItem).State = System.Data.EntityState.Detached;
}
base.Delete(instance);
}
// ... other methods ...
}
Hope someone will find this solution helpful.

Decoupling Entity Framework from my POCO classes

I'm dynamically creating my DbContext by iterating over any entities that inherit from EntityBase and adding them to my Context:
private void AddEntities(DbModelBuilder modelBuilder)
{
var entityMethod = typeof(DbModelBuilder).GetMethod("Entity");
foreach (var assembly in AppDomain.CurrentDomain.GetAssemblies())
{
var entityTypes = assembly.GetTypes()
.Where(x => x.IsSubclassOf(typeof(EntityBase)) && !x.IsAbstract);
foreach (var type in entityTypes)
{
dynamic entityConfiguration = entityMethod.MakeGenericMethod(type).Invoke(modelBuilder, new object[] { });
EntityBase entity = (EntityBase)Activator.CreateInstance(type);
//Add any specific mappings that this class has defined
entity.OnModelCreating(entityConfiguration);
}
}
}
That way, I can have many namespaces but just one generic repository in my base namespace that's used everywhere. Also, in apps that make use of multiple namespaces, the base repository will already be setup to use all the entities in all the loaded namespaces. My problem is, I don't want to make EntityFramework.dll a dependency of every namespace in the company. So I'm calling OnModelCreating and passing the EntityTypeConfiguration to the class so it can add any mappings. This works fine and here's how I can add a mapping to tell the model that my "Description" property comes from a column called "Descriptor":
class Widget... {
public override void OnModelCreating(dynamic entity)
{
System.Linq.Expressions.Expression<Func<Widget, string>> tmp =
x => x.Description;
entity.Property(tmp).HasColumnName("Descriptor");
}
The good thing is, my entity class has no reference to EF, this method is only called once, when the context is created and if we scrap EF and go to something else in the future, my classes won't have all sorts of attributes specific to EF in them.
The problem is, it's super ugly. How can I let the model know about column mappings and keys in a simpler way than creating these Expressions to get properties to map without hard coding references to EF all over my poco classes?
You could define your own Attributes and use these to control the configuration within OnModelCreating(). You should be able to gain (using reflection) all the details you need for column mapping in one linq query a second query for the creation of the key.
public class DatabaseNameAttribute : Attribute
{
private readonly string _name;
public DatabaseNameAttribute(string name)
{
_name = name;
}
public string Name
{
get
{
return _name;
}
}
}
public class KeySequenceAttribute : Attribute
{
private readonly int _sequence;
public KeySequenceAttribute(int sequence)
{
_sequence = sequence;
}
public int Sequence
{
get
{
return _sequence;
}
}
}
[DatabaseName("BlogEntry")]
public class Post
{
[DatabaseName("BlogId")]
[KeySequence(1)]
public int id { get; set; }
[DatabaseName("Description")]
public string text { get; set; }
}