The problem with flet is that the functions bound therein must be defined inline. In other words, there's no way to do this:
(new-flet ((a (lambda (f x)
(funcall f (* x 2))))
(b (function-generator)))
(a #'b 10))
I considered defining such a macro myself, but the problem is that flet seems to be the only way to set local function values. symbol-function always gets the global definition only, and function can't be used with setf. Anyone have an idea how this can be done fairly cleanly, if at all?
You can easily build a trampoline
(defun function-generator (x)
(lambda (y) (* x y)))
(let ((fg (function-generator 42)))
(flet ((a (f x) (funcall f (* x 2)))
(b (x) (funcall fg x)))
(a #'b 10)))
A macro implementation of new-flet with this approach is
(defmacro new-flet (bindings &body body)
(let ((let-bindings (list))
(flet-bindings (list))
(args (gensym)))
(dolist (binding bindings)
(let ((name (gensym)))
(push `(,name ,(second binding))
let-bindings)
(push `(,(first binding) (&rest ,args)
(apply ,name ,args))
flet-bindings)))
`(let ,(nreverse let-bindings)
(flet ,(nreverse flet-bindings)
,#body))))
that expands in your example case as
(macroexpand-1 '(new-flet ((a (lambda (f x) (funcall f (* x 2))))
(b (function-generator)))
(a #'b 10)))
==> (LET ((#:G605 (LAMBDA (F X)
(FUNCALL F (* X 2))))
(#:G606 (FUNCTION-GENERATOR)))
(FLET ((A (&REST #:G604)
(APPLY #:G605 #:G604))
(B (&REST #:G604)
(APPLY #:G606 #:G604)))
(A #'B 10)))
Is
(let* ((a (lambda (f x) (funcall f (* x 2))))
(b (function-generator)))
(funcall a b 10))
a fairly clean solution to your problem?
How about binding the variables with let, so that they're setfable, and then using an flet as the body of the let so that they're funcallable and (function …)-able, too. E.g., where I've given a silly little function instead of (generate-function):
(let ((a (lambda (f x)
(funcall f (* x 2))))
(b (lambda (&rest args)
(print (list* 'print-from-b args)))))
(flet ((a (&rest args)
(apply a args))
(b (&rest args)
(apply b args)))
(a #'b 10)))
We can wrap this up in a macro relatively easily:
(defmacro let/flet (bindings &body body)
(let ((args (gensym (string '#:args-))))
`(let ,bindings
(flet ,(loop :for (name nil) :in bindings
:collect `(,name (&rest ,args) (apply ,name ,args)))
,#body))))
Now
(let/flet ((a (lambda (f x)
(funcall f (* x 2))))
(b (lambda (&rest args)
(print (list* 'print-from-b args)))))
(a #'b 10))
expands into the first block of code. Note that you can also use (a b 10) in the body as well, since the binding of b is the same as the value of #'b. You can use setf on the variable as well:
(let/flet ((a (lambda (x)
(print (list 'from-a x)))))
(a 23)
(setf a (lambda (x)
(print (list 'from-new-a x x))))
(a 23))
prints
(FROM-A 23)
(FROM-NEW-A 23 23)
If anyone's interested in a labels equivalent, here it is:
(defmacro my-labels ((&rest definitions) &rest body)
(let ((gensyms (loop for d in definitions collect (gensym)))
(names (loop for d in definitions collect (car d)))
(fdefs (loop for f in definitions collect (cadr f)))
(args (gensym)))
`(let (,#(loop for g in gensyms collect (list g)))
(labels (,#(loop for g in gensyms for n in names
collect `(,n (&rest ,args) (apply ,g ,args))))
,#(loop for g in gensyms for f in fdefs
collect `(setf ,g ,f))
,#body))))
This is sort of like Scheme's letrec.
Related
I am trying to do the exercises on this tutorial about CLOS using SBCL and Slime (Emacs).
I have this class, instance, and function to set values for the slots:
(defclass point ()
(x y z))
(defvar my-point
(make-instance 'point))
(defun with-slots-set-point-values (point a b c)
(with-slots (x y z) point (setf x a y b z c)))
Using the REPL, it works fine:
CL-USER> (with-slots-set-point-values my-point 111 222 333)
333
CL-USER> (describe my-point)
#<POINT {1003747793}>
[standard-object]
Slots with :INSTANCE allocation:
X = 111
Y = 222
Z = 333
; No value
Now, the exercises indicates that using the symbol-macrolet I need to implement my version of with-slots.
I have a partial implementation of my with-slots (I still need to insert add the operation):
(defun partial-my-with-slots (slot-list object)
(mapcar #'(lambda (alpha beta) (list alpha beta))
slot-list
(mapcar #'(lambda (var) (slot-value object var)) slot-list)))
It works when calling it:
CL-USER> (partial-my-with-slots '(x y z) my-point)
((X 111) (Y 222) (Z 333))
Since this use of symbol-macrolet works:
CL-USER> (symbol-macrolet ((x 111) (y 222) (z 333))
(+ x y z))
666
I tried doing:
CL-USER> (symbol-macrolet (partial-my-with-slots '(x y z) my-point)
(+ x y z))
But, for some reason that I do not know, Slime throws the error:
malformed symbol/expansion pair: PARTIAL-MY-WITH-SLOTS
[Condition of type SB-INT:SIMPLE-PROGRAM-ERROR]
Why does this happen? How can I fix this?
You can't write with-slots as a function which is called at run time. Instead it needs to be a function which takes source code as an argument and returns other source code. In particular if given this argument
(my-with-slots (x ...) <something> <form> ...)
It should return this result:
(let ((<invisible-variable> <something))
(symbol-macrolet ((x (slot-value <invisible-variable>)) ...)
<form> ...))
You need <invisible-variable> so you evaluate <object-form> only once.
Well, here is a function which does most of that:
(defun mws-expander (form)
(destructuring-bind (mws (&rest slot-names) object-form &rest forms) form
(declare (ignore mws))
`(let ((<invisible-variable> ,object-form))
(symbol-macrolet ,(mapcar (lambda (slot-name)
`(,slot-name (slot-value <invisible-variable>
',slot-name)))
slot-names)
,#forms))))
And you can check this:
> (mws-expander '(my-with-slots (x y) a (list x y)))
(let ((<invisible-variable> a))
(symbol-macrolet ((x (slot-value <invisible-variable> 'x))
(y (slot-value <invisible-variable> 'y)))
(list x y)))
So that's almost right, except the invisible variable really needs to be invisible:
(defun mws-expander (form)
(destructuring-bind (mws (&rest slot-names) object-form &rest forms) form
(declare (ignore mws))
(let ((<invisible-variable> (gensym)))
`(let ((,<invisible-variable> ,object-form))
(symbol-macrolet ,(mapcar (lambda (slot-name)
`(,slot-name (slot-value ,<invisible-variable>
',slot-name)))
slot-names)
,#forms)))))
And now:
> (mws-expander '(my-with-slots (x y) a (list x y)))
(let ((#:g1509 a))
(symbol-macrolet ((x (slot-value #:g1509 'x))
(y (slot-value #:g1509 'y)))
(list x y)))
Well, a function which takes source code as an argument and returns other source code is a macro. So, finally, we need to install this function as a macroexpander, arranging to ignore the second argument that macro functions get:
(setf (macro-function 'mws)
(lambda (form environment)
(declare (ignore environment))
(mws-expander form)))
And now:
> (macroexpand '(mws (x y) a (list x y)))
(let ((#:g1434 a))
(symbol-macrolet ((x (slot-value #:g1434 'x)) (y (slot-value #:g1434 'y)))
(list x y)))
This would be more conventionally written using defmacro, of course:
(defmacro mws ((&rest slot-names) object-form &rest forms)
(let ((<invisible-variable> (gensym)))
`(let ((,<invisible-variable> ,object-form))
(symbol-macrolet ,(mapcar (lambda (slot-name)
`(,slot-name (slot-value ,<invisible-variable> ',slot-name)))
slot-names)
,#forms))))
However the two definitions are equivalent (modulo needing some eval-whenery to make the first work properly with the compiler).
You need to return expressions that will call slot-value when substituted into the macro expansion, rather than calling the function immediately. Backquote is useful for this.
(defun partial-my-with-slots (slot-list object)
(mapcar #'(lambda (alpha beta) (list alpha beta))
slot-list
(mapcar #'(lambda (var) `(slot-value ,object ',var)) slot-list)))
> (partial-my-with-slots '(x y z) 'my-point)
((x (slot-value my-point 'x)) (y (slot-value my-point 'y)) (z (slot-value my-point 'z)))
You use this in your with-slots macro like this:
(defmacro my-with-slots ((&rest slot-names) instance-form &body body)
`(symbol-macrolet ,(partial-my-with-slots slot-names instance-form)
,#body))
> (macroexpand '(my-with-slots (x y z) point (setf x a y b z c)))
(SYMBOL-MACROLET ((X (SLOT-VALUE POINT 'X))
(Y (SLOT-VALUE POINT 'Y))
(Z (SLOT-VALUE POINT 'Z)))
(SETF X A
Y B
Z C))
I'm trying to write let over lambda defmacro/g! in guile scheme. I have this:
(use-modules (srfi srfi-1))
(define (flatten x)
(let rec ((x x) (acc '()))
(cond ((null? x) acc)
((not (pair? x)) (cons x acc))
(else
(rec (car x)
(rec (cdr x) acc))))))
(define (g!-symbol? s)
(and (symbol? s)
(let ((symbol-string (symbol->string s)))
(and (> (string-length symbol-string) 2)
(equal? (string-downcase (substring symbol-string 0 2)) "g!")))))
(define-macro (define-macro/g! name-args . body)
(let ((syms (delete-duplicates
(filter g!-symbol? (flatten body)))))
`(define-macro ,name-args
(let ,(map
(lambda (s)
`(,s (gensym ,(substring (symbol->string s) 2))))
syms)
,#body))))
but when I try to macro expand define-macro/g! using this:
(use-modules (language tree-il))
(tree-il->scheme (macroexpand '(define-macro/g! (foo . body) `(let ((g!car ,(car body))) g!car))))
I've got this:
$15 = (if #f #f)
why I've got this result? How can I expand define-macro/g!?
I need to use this code:
(define macro '(define-macro/g! (foo . body) `(let ((g!car ,(car body))) g!car)))
(tree-il->scheme (macroexpand macro 'c '(compile load eval)))
I have the following function in lisp:
(defun F(F)
#'(lambda (n)
(if (zerop n)
(funcall F n)
(1+ (funcall (F F) (1- n))))))
How does this code behaves if I call:
(funcall (F #'(lambda (x) (+ 2 x))) 2)
I dont understand why the output is 4.
Thanks in advance
Since we know the argument, we can simplify the if statement in the function:
(funcall (F #'(lambda (x) (+ 2 x))) 2)
(1+ (funcall (F #'(lambda (x) (+ 2 x))) 1))
(1+ (1+ (funcall #'(lambda (x) (+ 2 x)) 0)))
(1+ (1+ 2))
4
The first 2 transformations replace (if false A B) with B, while the 3rd replaces (if true A B) with A.
First, untangle the two F:
(defun foo (fun)
#'(lambda (n)
(if (zerop n)
(funcall fun n)
(1+ (funcall (foo fun) (1- n))))))
Now, you call:
(funcall (foo #'(lambda (x) (+ 2 x))) 2)
We can give the inner lambda a name, I'll call it add-2.
(funcall (foo #'add-2) 2)
(Foo #'add-2) then returns the function
(lambda (n)
(if (zerop n)
(funcall #'add-2 n) ; n is always 0 here
(1+ (funcall (foo #'add-2) (1- n)))))
This gets called with 2, which is not zerop, so it is:
(1+ (funcall (foo #'add-2) 1))
We already know what (foo #'add-2) returns, and it gets called with 1 now, which still is not zerop:
(1+ (1+ (funcall (foo #'add-2) 0)))
Now the argument is 0, so we get to the base case:
(1+ (1+ (funcall #'add-2 0)))
We now can see that foo creates a function that adds n to the result of calling (fun 0).
In other words, is it possible to locally define a function in a way similar to how flet or labels does it? My final goal is to have a macro similar to labels which instead of regular functions uses instances of funcallable-standard-class and not having to use funcall. A use-case might look like the one below:
(funcallable-let ((foo func-class :initargs ...))
(foo ...))
symbol-macrolet seems to only expand when not in the head position. If I try (setf (symbol-function 'foo) (make-instance 'some-funcallable-class)) this sets it globally for this symbol an not for the scope of the enclosing let.
Here's what I could get so far (but it doesn't work because macrolet wouldn't expand in this scenario...)
(defclass func ()
((state :initarg :state :accessor state-of))
(:metaclass sb-mop:funcallable-standard-class))
(defmethod initialize-instance :after ((this func) &rest initargs)
(declare (ignore initargs))
(sb-mop:set-funcallable-instance-function
this (lambda ()
(format t "~&I am: ~s, my state is: ~s" this (state-of this)))))
(defmacro funcallable-let (bindings &body body)
(loop :for binding :in bindings
:for name := (car binding)
:for class := (cadr binding)
:for init-args := (cddr binding)
:collect `(,name (make-instance ',class ,.init-args)) :into classes
:collect `(,name (&rest args) (list 'apply '',name args)) :into macrolets
:collect name :into ignorables
:finally
(return
`(let ,classes
(declare (ignorable ,#ignorables))
(macrolet ,macrolets
,#body)))))
(defun test-funcallable-let ()
(funcallable-let ((f func :state :f-state)
(g func :state :g-state))
(f) (funcall 'g)))
This is somewhat modified Lars' Brinkoff macro:
(defmacro funcallable-let (bindings &body body)
(loop
:for binding :in bindings
:for symbol := (gensym)
:for name := (car binding)
:for class := (cadr binding)
:for init-args := (cddr binding)
:collect `(,symbol (make-instance ',class ,.init-args)) :into lets
:collect `(,name (&rest args) (apply ',symbol args)) :into flets
:collect symbol :into ignorables
:finally
(return
`(let ,lets
(declare (ignorable ,#ignorables))
(flet ,flets ,#body)))))
Which wouldn't work either.
So, we want the value of f to be the funcallable object, so that things like (setf (state-of f) new-state) work, but also a macro definition for f, so that (f 1 2 3) expands to (funcall f 1 2 3). Let's write some direct code first. First, your func definition, but with a slightly different funcallable instance function, so that we can pass some arguments in and see what they are:
(defclass func ()
((state :initarg :state :accessor state-of))
(:metaclass sb-mop:funcallable-standard-class))
(defmethod initialize-instance :after ((this func) &rest initargs)
(declare (ignore initargs))
(sb-mop:set-funcallable-instance-function
this (lambda (&rest args)
(format t "~&I am: ~s, my state is: ~s, my args were ~s" this (state-of this) args))))
Then, we can write the code that we'd want the funcallable-let to expand into. As the output shows, f in a head position ends up being a call to the funcallable instance, but f in a non head position is a variable that has the funcallable instance as a value, so you can, e.g., (setf (state-of f) new-state):
(let ((f (make-instance 'func :state 34)))
(macrolet ((f (&rest args)
`(funcall f ,#args)))
(f 1 2 3)
(setf (state-of f) 89)
(f 4 5 6)))
; I am: #<FUNC {1002A0B329}>, my state is: 34, my args were (1 2 3)
; I am: #<FUNC {1002A0B329}>, my state is: 89, my args were (4 5 6)
That seems good. Now we just need to macroify it:
(defmacro funcallable-let (bindings &body body)
`(let (,#(loop :for (name . initargs) :in bindings
:collect `(,name (make-instance 'func ,#initargs))))
(macrolet (,#(loop :for (name . initargs) :in bindings
:collect `(,name (&rest args)
`(funcall ,',name ,#args))))
,#body)))
The macroexpansion looks right:
CL-USER> (pprint (macroexpand '(funcallable-let ((f :state 34))
(f 1 2 3))))
(LET ((F (MAKE-INSTANCE 'FUNC :STATE 34)))
(MACROLET ((F (&REST ARGS)
`(FUNCALL F ,#ARGS)))
(F 1 2 3)))
And the behavior seems right (you can call with (f ...) or with (funcall f ...), and you can (setf (state-of f) ...):
CL-USER> (funcallable-let ((f :state 34))
(f 1 2 3)
(setf (state-of f) 89)
(f 4 5 6)
(setf (state-of f) 62)
(funcall f 7 8 9))
I am: #<FUNC {1002BEC389}>, my state is: 34, my args were (1 2 3)
I am: #<FUNC {1002BEC389}>, my state is: 89, my args were (4 5 6)
I am: #<FUNC {1002BEC389}>, my state is: 62, my args were (7 8 9)
NIL
I'm not sure what you are trying to do, but maybe this?
(defmacro funcallable-let (bindings &body body)
(let ((gensyms (loop repeat (length bindings) collect (gensym))))
`(let ,(loop for (name value) in bindings and g in gensyms
collect `(,g ,value))
(flet ,(loop for (name value) in bindings and g in gensyms
collect `(,name (&rest args) (apply ,g args)))
,#body))))
Sample usage:
(funcallable-let ((foo (make-instance 'some-funcallable-class :initargs ...)))
(foo ...))
For a similar problem see GENERIC-FLET and GENERIC-LABELS of CLtL2 and why it was removed in ANSI Common Lisp.
http://www.lispworks.com/documentation/HyperSpec/Issues/iss181_w.htm
I'm trying to implement a Division function with clisp Lambda Calc. style
I read from this site that lambda expression of a division is:
Y (λgqab. LT a b (PAIR q a) (g (SUCC q) (SUB a b) b)) 0
These are TRUE and FALSE
(defvar TRUE #'(lambda(x)#'(lambda(y)x)))
(defvar FALSE #'(lambda(x)#'(lambda(y)y)))
These are conversion functions between Int and Church numbers
(defun church2int(numchurch)
(funcall (funcall numchurch #'(lambda (x) (+ x 1))) 0)
)
(defun int2church(n)
(cond
((= n 0) #'(lambda(f) #'(lambda(x)x)))
(t #'(lambda(f) #'(lambda(x) (funcall f
(funcall(funcall(int2church (- n 1))f)x))))))
)
This is my IF-THEN-ELSE Implementation
(defvar IF-THEN-ELSE
#'(lambda(c)
#'(lambda(x)
#'(lambda(y)
#'(lambda(acc1)
#'(lambda (acc2)
(funcall (funcall (funcall (funcall c x) y) acc1) acc2))))))
)
And this is my div implementation
(defvar division
#'(lambda (g)
#'(lambda (q)
#'(lambda (a)
#'(lambda (b)
(funcall (funcall (funcall (funcall (funcall IF-THEN-ELSE LT) a) b)
(funcall (funcall PAIR q)a))
(funcall (funcall g (funcall succ q)) (funcall (funcall sub a)b))
)))))
)
PAIR, SUCC and SUB functions work fine. I set my church numbers up like this
(set six (int2church 6))
(set two (int2church 2))
Then I do:
(setq D (funcall (funcall division six) two))
And I've got:
#<FUNCTION :LAMBDA (A)
#'(LAMBDA (B)
(FUNCALL (FUNCALL (FUNCALL (FUNCALL (FUNCALL IF-THEN-ELSE LT) A) B) (FUNCALL (FUNCALL PAR Q) A))
(FUNCALL (FUNCALL G (FUNCALL SUCC Q)) (FUNCALL (FUNCALL SUB A) B))))>
For what I understand, this function return a Church Pair. If I try to get the first element
with a function FRST (FRST works ok) like this:
(funcall frst D)
I've got
#<FUNCTION :LAMBDA (B)
(FUNCALL (FUNCALL (FUNCALL (FUNCALL (FUNCALL IF-THEN-ELSE LT) A) B) (FUNCALL (FUNCALL PAR Q) A))
(FUNCALL (FUNCALL G (FUNCALL SUCC Q)) (FUNCALL (FUNCALL SUB A) B)))>
If I try to get the int value with Church2int (Church2int works OK) like this:
(church2int (funcall frst D))
I've got
*** - +:
#<FUNCTION :LAMBDA (N)
#'(LAMBDA (F)
#'(LAMBDA (X)
(FUNCALL (FUNCALL (FUNCALL N #'(LAMBDA (G) #'(LAMBDA (H) (FUNCALL H (FUNCALL G F))))) #'(LAMBDA (U) X)) (LAMBDA (U) U))))>
is not a number
Where I expect to get 3
I think the problem is in DIVISION function, after the IF-THEN-ELSE, I tried to change it a little bit (I thought it was a nested parenthesis problem) but I got lots of errors.
Any help would be appreciated
Thanks
There are several problems with your definition.
DIVISION does not use the Y combinator, but the original definition does.
This is important, because the DIVISION function expects a copy of itself in the g
parameter.
However, even if you added the Y invocation, your code would still not work
but go into an infinite loop instead. That's because Common Lisp, like most of today's languages, is a call-by-value language. All arguments are evaluated before a function is called. This means that you cannot define conditional functions as elegantly as the traditional lambda calculus semantics would allow.
Here's one way of doing church number division in Common Lisp. I've taken the liberty of introducing some syntax to make this a bit more readable.
;;;; -*- coding: utf-8 -*-
;;;; --- preamble, define lambda calculus language
(cl:in-package #:cl-user)
(defpackage #:lambda-calc
;; note: not using common-lisp package
(:use)
(:export #:λ #:call #:define))
;; (lambda-calc:λ (x y) body)
;; ==> (cl:lambda (x) (cl:lambda (y) body))
(defmacro lambda-calc:λ ((arg &rest more-args) body-expr)
(labels ((rec (args)
(if (null args)
body-expr
`(lambda (,(car args))
(declare (ignorable ,(car args)))
,(rec (cdr args))))))
(rec (cons arg more-args))))
;; (lambda-calc:call f a b)
;; ==> (cl:funcall (cl:funcall f a) b)
(defmacro lambda-calc:call (func &rest args)
(labels ((rec (args)
(if (null args)
func
`(funcall ,(rec (cdr args)) ,(car args)))))
(rec (reverse args))))
;; Defines top-level lexical variables
(defmacro lambda-calc:define (name value)
(let ((vname (gensym (princ-to-string name))))
`(progn
(defparameter ,vname nil)
(define-symbol-macro ,name ,vname)
(setf ,name
(flet ((,vname () ,value))
(,vname))))))
;; Syntax: {f a b}
;; ==> (lambda-calc:call f a b)
;; ==> (cl:funcall (cl:funcall f a) b)
(eval-when (:compile-toplevel :load-toplevel :execute)
(set-macro-character #\{
(lambda (stream char)
(declare (ignore char))
`(lambda-calc:call
,#(read-delimited-list #\} stream t))))
(set-macro-character #\} (get-macro-character #\))))
;;;; --- end of preamble, fun starts here
(in-package #:lambda-calc)
;; booleans
(define TRUE
(λ (x y) x))
(define FALSE
(λ (x y) y))
(define NOT
(λ (bool) {bool FALSE TRUE}))
;; numbers
(define ZERO
(λ (f x) x))
(define SUCC
(λ (n f x) {f {n f x}}))
(define PLUS
(λ (m n) {m SUCC n}))
(define PRED
(λ (n f x)
{n (λ (g h) {h {g f}})
(λ (u) x)
(λ (u) u)}))
(define SUB
(λ (m n) {n PRED m}))
(define ISZERO
(λ (n) {n (λ (x) FALSE) TRUE}))
(define <=
(λ (m n) {ISZERO {SUB m n}}))
(define <
(λ (m n) {NOT {<= n m}}))
(define ONE {SUCC ZERO})
(define TWO {SUCC ONE})
(define THREE {SUCC TWO})
(define FOUR {SUCC THREE})
(define FIVE {SUCC FOUR})
(define SIX {SUCC FIVE})
(define SEVEN {SUCC SIX})
(define EIGHT {SUCC SEVEN})
(define NINE {SUCC EIGHT})
(define TEN {SUCC NINE})
;; combinators
(define Y
(λ (f)
{(λ (rec arg) {f {rec rec} arg})
(λ (rec arg) {f {rec rec} arg})}))
(define IF
(λ (condition if-true if-false)
{{condition if-true if-false} condition}))
;; pairs
(define PAIR
(λ (x y select) {select x y}))
(define FIRST
(λ (pair) {pair TRUE}))
(define SECOND
(λ (pair) {pair FALSE}))
;; conversion from/to lisp integers
(cl:defun int-to-church (number)
(cl:if (cl:zerop number)
zero
{succ (int-to-church (cl:1- number))}))
(cl:defun church-to-int (church-number)
{church-number #'cl:1+ 0})
;; what we're all here for
(define DIVISION
{Y (λ (recurse q a b)
{IF {< a b}
(λ (c) {PAIR q a})
(λ (c) {recurse {SUCC q} {SUB a b} b})})
ZERO})
If you put this into a file, you can do:
[1]> (load "lambdacalc.lisp")
;; Loading file lambdacalc.lisp ...
;; Loaded file lambdacalc.lisp
T
[2]> (in-package :lambda-calc)
#<PACKAGE LAMBDA-CALC>
LAMBDA-CALC[3]> (church-to-int {FIRST {DIVISION TEN FIVE}})
2
LAMBDA-CALC[4]> (church-to-int {SECOND {DIVISION TEN FIVE}})
0
LAMBDA-CALC[5]> (church-to-int {FIRST {DIVISION TEN FOUR}})
2
LAMBDA-CALC[6]> (church-to-int {SECOND {DIVISION TEN FOUR}})
2