please see the below code:
$scalar = 10;
subroutine(\$scalar);
sub subroutine {
my $subroutine_scalar = ${$_[0]}; #note you need the {} brackets, or this doesn't work!
print "$subroutine_scalar\n";
}
In the code above you can see the comment written "note you need the {} brackets, or this doesn't work!" . Please explain the reason that why we cant use the same statement as:
my $subroutine_scalar = $$_[0];
i.e. without using the curly brackets.
Many people have already given correct answers here. I wanted to add an example I found illuminating. You can read the documentation in perldoc perlref for more information.
Your problem is one of ambiguity, you have two operations $$ and [0] working on the same identifier _, and the result depends on which operation is performed first. We can make it less ambiguous by using the support curly braces ${ ... }. $$_[0] could (for a human anyway) possibly mean:
${$$_}[0] -- dereference the scalar $_, then take its first element.
${$_[0]} -- take element 0 of the array #_ and dereference it.
As you can see, these two cases refer to completely different variables, #_ and $_.
Of course, for Perl it is not ambiguous, we simply get the first option, since dereferencing is performed before key lookup. We need the support curly braces to override this dereferencing, and that is why your example does not "work" without support braces.
You might consider a slightly less confusing functionality for your subroutine. Instead of trying to do two things at once (get the argument and dereference it), you can do it in two stages:
sub foo {
my $n = shift;
print $$n;
}
Here, we take the first argument off #_ with shift, and then dereference it. Clean and simple.
Most often, you will not be using references to scalar variables, however. And in those cases, you can make use of the arrow operator ->
my #array = (1,2,3);
foo(\#array);
sub foo {
my $aref = shift;
print $aref->[0];
}
I find using the arrow operator to be preferable to the $$ syntax.
${ $x }[0] grabs the value of element 0 in the array referenced by $x.
${ $x[0] } grabs the value of scalar referenced by the element 0 of the array #x.
>perl -E"$x=['def']; #x=\'abc'; say ${ $x }[0];"
def
>perl -E"$x=['def']; #x=\'abc'; say ${ $x[0] };"
abc
$$x[0] is short for ${ $x }[0].
>perl -E"$x=['def']; #x=\'abc'; say $$x[0];"
def
my $subroutine_scalar = $$_[0];
is same as
my $subroutine_scalar = $_->[0]; # $_ is array reference
On the other hand,
my $subroutine_scalar = ${$_[0]};
dereferences scalar ref for first element of #_ array, and can be written as
my ($sref) = #_;
my $subroutine_scalar = ${$sref}; # or $$sref for short
Because $$_[0] means ${$_}[0].
Consider these two pieces of code which both print 10:
sub subroutine1 {
my $scalar = 10;
my $ref_scalar = \$scalar;
my #array = ($ref_scalar);
my $subroutine_scalar = ${$array[0]};
print "$subroutine_scalar\n";
}
sub subroutine2 {
my #array = (10);
my $ref_array = \#array;
my $subroutine_scalar = $$ref_array[0];
print "$subroutine_scalar\n";
}
In subroutine1, #array is an array containing the reference of $scalar. So the first step is to get the first element by $array[0], and then deference it.
While in subroutine2, #array is an array containing an scalar 10, and $ref_array is its reference. So the first step is to get the array by $ref_array, and then index the array.
Related
I must simply ask what is the difference between the two here ?
${$rarray[1]} vs ${$rarray}[1]
I understand ${$rarray}[1] but I really cannot life of me understand ${$rarray[1]} ??
${$rarray[1]} is the second element of an array $rarray[1] being dereferenced into a scalar by ${ ... }.
${$rarray}[1] is the second element in the array #$rarray.
It can be easier to see if you add some whitespace:
${ $rarray[1] } # #rarray is defined somewhere
${ $rarray }[1] # $rarray is an array reference
As a way to visualize it, imagine this
my $aref = $rarray[1]; # copy array ref
print ${ $aref }; # dereference $aref
How do I properly define an anonymous scalar ref in Perl?
my $scalar_ref = ?;
my $array_ref = [];
my $hash_ref = {};
If you want a reference to some mutable storage, there's no particularly neat direct syntax for it. About the best you can manage is
my $var;
my $sref = \$var;
Or neater
my $sref = \my $var;
Or if you don't want the variable itself to be in scope any more, you can use a do block:
my $sref = do { \my $tmp };
At this point you can pass $sref around by value, and any mutations to the scalar it references will be seen by others.
This technique of course works just as well for array or hash references, just that there's neater syntax for doing that with [] and {}:
my $aref = do { \my #tmp }; ## same as my $aref = [];
my $href = do { \my %tmp }; ## same as my $href = {};
Usually you just declare and don't initialize it.
my $foo; # will be undef.
You have to consider that empty hash refs and empty array refs point to a data structure that has a representation. Both of them, when dereferenced, give you an empty list.
perldata says (emphasis mine):
There are actually two varieties of null strings (sometimes referred to as "empty" strings), a defined one and an undefined one. The defined version is just a string of length zero, such as "" . The undefined version is the value that indicates that there is no real value for something, such as when there was an error, or at end of file, or when you refer to an uninitialized variable or element of an array or hash. Although in early versions of Perl, an undefined scalar could become defined when first used in a place expecting a defined value, this no longer happens except for rare cases of autovivification as explained in perlref. You can use the defined() operator to determine whether a scalar value is defined (this has no meaning on arrays or hashes), and the undef() operator to produce an undefined value.
So an empty scalar (which it didn't actually say) would be undef. If you want it to be a reference, make it one.
use strict;
use warnings;
use Data::Printer;
my $scalar_ref = \undef;
my $scalar = $$scalar_ref;
p $scalar_ref;
p $scalar;
This will output:
\ undef
undef
However, as ikegami pointed out, it will be read-only because it's not a variable. LeoNerd provides a better approach for this in his answer.
Anyway, my point is, an empty hash ref and an empty array ref when dereferenced both contain an empty list (). And that is not undef but nothing. But there is no nothing as a scalar value, because everything that is not nothing is a scalar value.
my $a = [];
say ref $r; # ARRAY
say scalar #$r; # 0
say "'#$r'"; # ''
So there is no real way to initialize with nothing. You can only not initialize. But Moose will turn it to undef anyway.
What you could do is make it maybe a scalar ref.
use strict;
use warnings;
use Data::Printer;
{
package Foo;
use Moose;
has bar => (
is => 'rw',
isa => 'Maybe[ScalarRef]',
predicate => 'has_bar'
);
}
my $foo = Foo->new;
p $foo->has_bar;
p $foo;
say $foo->bar;
Output:
""
Foo {
Parents Moose::Object
public methods (3) : bar, has_bar, meta
private methods (0)
internals: {}
}
Use of uninitialized value in say at scratch.pl line 268.
The predicate gives a value that is not true (the empty string ""). undef is also not true. The people who made Moose decided to go with that, but it really doesn't matter.
Probably what you want is not have a default value, but just make it a ScalarRef an required.
Note that perlref doesn't say anything about initializing an empty scalar ref either.
I'm not entirely sure why you need to but I'd suggest:
my $ref = \undef;
print ref $ref;
Or perhaps:
my $ref = \0;
#LeoNerd's answer is spot on.
Another option is to use a temporary anonymous hash value:
my $scalar_ref = \{_=>undef}->{_};
$$scalar_ref = "Hello!\n";
print $$scalar_ref;
Other thread that I read: What does assigning 'shift' to a variable mean?
I also used perldoc -f shift:
shift ARRAY
shift
Shifts the first value of the array off and returns it, shortening the array by 1 and moving everything down. If there are no elements in the array, returns the undefined value. If ARRAY is omitted, shifts the #_ array within the lexical scope of subroutines and formats, and the #ARGV array outside of a subroutine and also within the lexical scopes established by the eval STRING, BEGIN {}, INIT {}, CHECK {}, UNITCHECK {} and END {} constructs.
See also unshift, push, and pop. shift and unshift do the same thing to the left end of an array that pop and push do to the right end.
I understand outside of subroutines, the array is #ARGV, and inside arguments are passed through #_
I've read countless tutorials on how to use the shift function, but it's always about arrays, and how it removes the first element at the beginning of the array and returns it. But I see sometimes
$eg = shift;
~do more things here~
It seems as if nothing is making sense to me, and I feel like I can't continue reading more until I understand how this works as it's a "basic building block" to the language.
I'm not quite sure if an example of code is needed, as I believe the same principles apply to all programs that use shift. But if wrong I can provide some examples of code.
It depends on your context.
In all cases, shift removes the element at list index 0 and returns it, shifting all remaining elements down one.
Inside a sub, shift without an argument (bare shift) operates on the #_ list of subroutine parameters.
Suppose I call mysub('me', '22')
sub mysub {
my $self = shift; # return $_[0], moves everything else down, $self = 'me', #_ = ( '22' )
my $arg1 = shift; # returns $_[0], moves everything down, $arg1 = '22', #_ = ()
}
Outside a sub, it operates on the #ARGV list of command line parameters.
Given an argument, shift operates on that list.
my #list1 = ( 1,2,3,4,5 );
my $first = shift #list1; # $first = 1, #list1 = (2,3,4,5)
It removes the first element from an array and returns it.
If #_ contains the elements ("foo","bar",123) then the statement
$eg = shift; # same as $eg = shift #_
Assigns the value "foo" to the variable $eg, and leaves #_ containing the elements ("bar",123).
This is very much a basic building block of the language. You will frequently see this construction at the beginning of subroutines as it is one of the ways to copy the arguments to the subroutine (#_) into other variables.
sub func {
my $x = shift; # put first arg into $x
my $y = shift; # put second arg into $y
my #z = #_; # put remaining args into #z
...
}
$r = func(1,2,"foo");
I was always sure that if I pass a Perl subroutine a simple scalar, it can never change its value outside the subroutine. That is:
my $x = 100;
foo($x);
# without knowing anything about foo(), I'm sure $x still == 100
So if I want foo() to change x, I must pass it a reference to x.
Then I found out this is not the case:
sub foo {
$_[0] = 'CHANGED!';
}
my $x = 100;
foo($x);
print $x, "\n"; # prints 'CHANGED!'
And the same goes for array elements:
my #arr = (1,2,3);
print $arr[0], "\n"; # prints '1'
foo($arr[0]);
print $arr[0], "\n"; # prints 'CHANGED!'
That kinda surprised me. How does this work? Isn't the subroutine only gets the value of the argument? How does it know its address?
In Perl, the subroutine arguments stored in #_ are always aliases to the values at the call site. This aliasing only persists in #_, if you copy values out, that's what you get, values.
so in this sub:
sub example {
# #_ is an alias to the arguments
my ($x, $y, #rest) = #_; # $x $y and #rest contain copies of the values
my $args = \#_; # $args contains a reference to #_ which maintains aliases
}
Note that this aliasing happens after list expansion, so if you passed an array to example, the array expands in list context, and #_ is set to aliases of each element of the array (but the array itself is not available to example). If you wanted the latter, you would pass a reference to the array.
Aliasing of subroutine arguments is a very useful feature, but must be used with care. To prevent unintended modification of external variables, in Perl 6 you must specify that you want writable aliased arguments with is rw.
One of the lesser known but useful tricks is to use this aliasing feature to create array refs of aliases
my ($x, $y) = (1, 2);
my $alias = sub {\#_}->($x, $y);
$$alias[1]++; # $y is now 3
or aliased slices:
my $slice = sub {\#_}->(#somearray[3 .. 10]);
it also turns out that using sub {\#_}->(LIST) to create an array from a list is actually faster than [ LIST ] since Perl does not need to copy every value. Of course the downside (or upside depending on your perspective) is that the values remain aliased, so you can't change them without changing the originals.
As tchrist mentions in a comment to another answer, when you use any of Perl's aliasing constructs on #_, the $_ that they provide you is also an alias to the original subroutine arguments. Such as:
sub trim {s!^\s+!!, s!\s+$!! for #_} # in place trimming of white space
Lastly all of this behavior is nestable, so when using #_ (or a slice of it) in the argument list of another subroutine, it also gets aliases to the first subroutine's arguments:
sub add_1 {$_[0] += 1}
sub add_2 {
add_1(#_) for 1 .. 2;
}
This is all documented in detail in perldoc perlsub. For example:
Any arguments passed in show up in the array #_. Therefore, if you called a function with two arguments, those would be stored in $_[0] and $_[1]. The
array #_ is a local array, but its elements are aliases for the actual scalar parameters. In particular, if an element $_[0] is updated, the
corresponding argument is updated (or an error occurs if it is not updatable). If an argument is an array or hash element which did not exist when the
function was called, that element is created only when (and if) it is modified or a reference to it is taken. (Some earlier versions of Perl created the
element whether or not the element was assigned to.) Assigning to the whole array #_ removes that aliasing, and does not update any arguments.
Perl passes arguments by reference, not by value. See http://www.troubleshooters.com/codecorn/littperl/perlsub.htm
I was glancing through some code I had written in my Perl class and I noticed this.
my ($string) = #_;
my #stringarray = split(//, $string);
I am wondering two things:
The first line where the variable is in parenthesis, this is something you do when declaring more than one variable and if I removed them it would still work right?
The second question would be what does the #_ do?
The #_ variable is an array that contains all the parameters passed into a subroutine.
The parentheses around the $string variable are absolutely necessary. They designate that you are assigning variables from an array. Without them, the #_ array is assigned to $string in a scalar context, which means that $string would be equal to the number of parameters passed into the subroutine. For example:
sub foo {
my $bar = #_;
print $bar;
}
foo('bar');
The output here is 1--definitely not what you are expecting in this case.
Alternatively, you could assign the $string variable without using the #_ array and using the shift function instead:
sub foo {
my $bar = shift;
print $bar;
}
Using one method over the other is quite a matter of taste. I asked this very question which you can check out if you are interested.
When you encounter a special (or punctuation) variable in Perl, check out the perlvar documentation. It lists them all, gives you an English equivalent, and tells you what it does.
Perl has two different contexts, scalar context, and list context. An array '#_', if used in scalar context returns the size of the array.
So given these two examples, the first one gives you the size of the #_ array, and the other gives you the first element.
my $string = #_ ;
my ($string) = #_ ;
Perl has three 'Default' variables $_, #_, and depending on who you ask %_. Many operations will use these variables, if you don't give them a variable to work on. The only exception is there is no operation that currently will by default use %_.
For example we have push, pop, shift, and unshift, that all will accept an array as the first parameter.
If you don't give them a parameter, they will use the 'default' variable instead. So 'shift;' is the same as 'shift #_;'
The way that subroutines were designed, you couldn't formally tell the compiler which values you wanted in which variables. Well it made sense to just use the 'default' array variable '#_' to hold the arguments.
So these three subroutines are (nearly) identical.
sub myjoin{
my ( $stringl, $stringr ) = #_;
return "$stringl$stringr";
}
sub myjoin{
my $stringl = shift;
my $stringr = shift;
return "$stringl$stringr";
}
sub myjoin{
my $stringl = shift #_;
my $stringr = shift #_;
return "$stringl$stringr";
}
I think the first one is slightly faster than the other two, because you aren't modifying the #_ variable.
The variable #_ is an array (hence the # prefix) that holds all of the parameters to the current function.