Integration of a system of differential equations MATLAB - matlab

I am a fairly new Matlab user which I had to explore to numerically integrate a system of differential equations. Now I am trying to resolve a simple equation but which gives me a "lambertw" output.
(s - 1) * exp(-s) = k
Therefore, for a given k, with k < exp(2) I should get approximately two different values of "s". Here is the bit of code I use for this task (using symbolic toolbox):
%%Hopf bifurcation calculations
syms s
solve((s-1) * exp(-s) == k, s)
%uhopf = s*k
And the output:
1 - lambertw(0, -(3*exp(1))/25)
After looking at some examples I tried to get an explicit solution with no success:
syms x
x=solve('(s-1)*exp(-s) == k')
Finally, my question is how do I change the result given in the first place into a simple numerical value that fir a given k would give me s1 and s2. Any hint or help would be much appreciated ! I am still looking at some other examples.

If I understand your question correctly, you can use the eval() function to evaluate the string to retrieve a simple numerical example.
e.g.
char s;
char k;
A=solve('(s-1) * exp(-s) = k', 'k=exp(1)');
sol_s=A.s(1);
sol_k=A.k(1);
ans=eval(sol_s)

Related

Solve equation with exponential term

I have the equation 1 = ((π r2)n) / n! ∙ e(-π r2)
I want to solve it using MATLAB. Is the following the correct code for doing this? The answer isn't clear to me.
n= 500;
A= 1000000;
d= n / A;
f= factorial( n );
solve (' 1 = ( d * pi * r^2 )^n / f . exp(- d * pi * r^2) ' , 'r')
The answer I get is:
Warning: The solutions are parametrized by the symbols:
k = Z_ intersect Dom::Interval([-(PI/2 -
Im(log(`fexp(-PI*d*r^2)`)/n)/2)/(PI*Re(1/n))], (PI/2 +
Im(log(`fexp(-PI*d*r^2)`)/n)/2)/(PI*Re(1/n)))
> In solve at 190
ans =
(fexp(-PI*d*r^2)^(1/n))^(1/2)/(pi^(1/2)*d^(1/2)*exp((pi*k*(2*i))/n)^(1/2))
-(fexp(-PI*d*r^2)^(1/n))^(1/2)/(pi^(1/2)*d^(1/2)*exp((pi*k*(2*i))/n)^(1/2))
You have several issues with your code.
1. First, you're evaluating some parts in floating-point. This isn't always bad as long as you know the solution will be exact. However, factorial(500) overflows to Inf. In fact, for factorial, anything bigger than 170 will overflow and any input bigger than 21 is potentially inexact because the result will be larger than flintmax. This calculation should be preformed symbolically via sym/factorial:
n = sym(500);
f = factorial(n);
which returns an integer approximately equal to 1.22e1134 for f.
2. You're using a period ('.') to specify multiplication. In MuPAD, upon which most of the symbolic math functions are based, a period is shorthand for concatenation.
Additionally, as is stated in the R2015a documentation (and possibly earlier):
String inputs will be removed in a future release. Use syms to declare the variables instead, and pass them as a comma-separated list or vector.
If you had not used a string, I don't think that it would have been possible for your command to get misinterpreted and return such a confusing result. Here is how you could use solve with symbolic variables:
syms r;
n = sym(500);
A = sym(1000000);
d = n/A;
s = solve(1==(d*sym(pi)*r^2)^n/factorial(n)*exp(-d*sym(pi)*r^2),r)
which, after several minutes, returns a 1,000-by-1 vector of solutions, all of which are complex. As #BenVoigt suggests, you can try the 'Real' option for solve. However, in R2015a at least, the four solutions returned in terms of lambertw don't appear to actually be real.
A couple things to note:
MATLAB is not using the values of A, d, and f from your workspace.
f . exp is not doing at all what you wanted, which was multiplication. It's instead becoming an unknown function fexp
Passing additional options of 'Real', true to solve gets rid of most of these extraneous conditions.
You probably should avoid calling the version of solve which accepts a string, and use the Symbolic Toolbox instead (syms 'r')

Finding unknown limit of integration in MATLAB

I have an equation of the form c = integral of f(t)dt limiting from a constant to a variable (I don't want to show the full equation because it is very long and complex). Is there any way to calculate in MATLAB what the value of that variable is (there are no other variables and the equation is too difficult to solve by hand)?
Assume your limit is from cons to t and g(t) as your function with variable t. Now,
syms t
f(t) = int(g(t),t);
This will give you the indefinite integral. Now f(t) will be
f(t) = f(t)+f(cons);
You have the value of f(t)=c. So just solve the equation
S = solve(f(t)==c,t,'Real',true);
eval(S) will give the answer i think
This is an extremely unclear question - if you do not want to post the full equation, post an example instead
I am assuming this is what you intend: you have an integrand f(x), which you know, and has been integrated to give some constant c which you know, over the limits of x = 0, to x = y, for example, where y may change, and you desire to find y
My advice would be to integrate f(x) manually, fill in the first limit, and subtract that portion from c. Next you could employ some technique such as the Newton-Ralphson method to iteratively search for the root to your equation, which should be in x only
You could use a function handle and the quad function for the integral
myFunc = #(t) exp(t*3); % or whatever
t0 = 0;
t1 = 3;
L = 50;
f = #(b) quad(#(t) myFunc(t,b),t0,t1);
bsolve = fzero(f,2);
Hope it help !

Implementing iterative solution of integral equation in Matlab

We have an equation similar to the Fredholm integral equation of second kind.
To solve this equation we have been given an iterative solution that is guaranteed to converge for our specific equation. Now our only problem consists in implementing this iterative prodedure in MATLAB.
For now, the problematic part of our code looks like this:
function delta = delta(x,a,P,H,E,c,c0,w)
delt = #(x)delta_a(x,a,P,H,E,c0,w);
for i=1:500
delt = #(x)delt(x) - 1/E.*integral(#(xi)((c(1)-c(2)*delt(xi))*ms(xi,x,a,P,H,w)),0,a-0.001);
end
delta=delt;
end
delta_a is a function of x, and represent the initial value of the iteration. ms is a function of x and xi.
As you might see we want delt to depend on both x (before the integral) and xi (inside of the integral) in the iteration. Unfortunately this way of writing the code (with the function handle) does not give us a numerical value, as we wish. We can't either write delt as two different functions, one of x and one of xi, since xi is not defined (until integral defines it). So, how can we make sure that delt depends on xi inside of the integral, and still get a numerical value out of the iteration?
Do any of you have any suggestions to how we might solve this?
Using numerical integration
Explanation of the input parameters: x is a vector of numerical values, all the rest are constants. A problem with my code is that the input parameter x is not being used (I guess this means that x is being treated as a symbol).
It looks like you can do a nesting of anonymous functions in MATLAB:
f =
#(x)2*x
>> ff = #(x) f(f(x))
ff =
#(x)f(f(x))
>> ff(2)
ans =
8
>> f = ff;
>> f(2)
ans =
8
Also it is possible to rebind the pointers to the functions.
Thus, you can set up your iteration like
delta_old = #(x) delta_a(x)
for i=1:500
delta_new = #(x) delta_old(x) - integral(#(xi),delta_old(xi))
delta_old = delta_new
end
plus the inclusion of your parameters...
You may want to consider to solve a discretized version of your problem.
Let K be the matrix which discretizes your Fredholm kernel k(t,s), e.g.
K(i,j) = int_a^b K(x_i, s) l_j(s) ds
where l_j(s) is, for instance, the j-th lagrange interpolant associated to the interpolation nodes (x_i) = x_1,x_2,...,x_n.
Then, solving your Picard iterations is as simple as doing
phi_n+1 = f + K*phi_n
i.e.
for i = 1:N
phi = f + K*phi
end
where phi_n and f are the nodal values of phi and f on the (x_i).

How to calculate the convolution of a function with itself in MATLAB and WolframAlpha?

I am trying to calculate the convolution of
x(t) = 1, -1<=t<=1
x(t) = 0, outside
with itself using the definition.
http://en.wikipedia.org/wiki/Convolution
I know how to do using the Matlab function conv, but I want to use the integral definition. My knowledge of Matlab and WolframAlpha is very limited.
I am still learning Mathematica myself, but here is what I came up with..
First we define the piecewise function (I am using the example from the Wikipedia page)
f[x_] := Piecewise[{{1, -0.5 <= x <= 0.5}}, 0]
Lets plot the function:
Plot[f[x], {x, -2, 2}, PlotStyle -> Thick, Exclusions -> None]
Then we write the function that defines the convolution of f with itself:
g[t_] = Integrate[f[x]*f[t - x], {x, -Infinity, Infinity}]
and the plot:
Plot[g[t], {t, -2, 2}, PlotStyle -> Thick]
EDIT
I tried to do the same in MATLAB/MuPad, I wasn't as successful:
f := x -> piecewise([x < -0.5 or x > 0.5, 0], [x >= -0.5 and x <= 0.5, 1])
plot(f, x = -2..2)
However when I try to compute the integral, it took almost a minute to return this:
g := t -> int(f(x)*f(t-x), x = -infinity..infinity)
the plot (also took too long)
plot(g, t = -2..2)
Note the same could have been done from inside MATLAB with the syntax:
evalin(symengine,'<MUPAD EXPRESSIONS HERE>')
Mathematica actually has a convolve function. The documentation on it has a number of different examples:
http://reference.wolfram.com/mathematica/ref/Convolve.html?q=Convolve&lang=en
I don't know much about Mathematica so I can only help you (partially) about the Matlab part.
To do the convolution with the Matlab conv functions means you do it numerically. What you mean with the integral definition is that you want to do it symbolically. For this you need the Matlab Symbolic Toolbox. This is essentially a Maple plugin for Matlab. So what you want to know is how it works in Maple.
You might find this link useful (wikibooks) for an introduction on the MuPad in Matlab.
I tried to implement your box function as a function in Matlab as
t = sym('t')
f = (t > -1) + (t < 1) - 1
However this does not work when t is ob symbolic type Function 'gt' is not implemented for MuPAD symbolic objects.
You could declare f it as a piecewise function see (matlab online help), this did not work in my Matlab though. The examples are all Maple syntax, so they would work in Maple straight away.
To circumvent this, I used
t = sym('t')
s = sym('s')
f = #(t) heaviside(t + 1) - heaviside(t - 1)
Unfortunately this is not successful
I = int(f(s)*f(t-s),s, 0, t)
gives
Warning: Explicit integral could not be found.
and does not provide an explicit result. You can still evaluate this expression, e.g.
>> subs(I, t, 1.5)
ans =
1/2
But Matlab/MuPad failed to give you and explicit expression in terms of t. This is not really unexpected as the function f is discontinuous. This is not so easy for symbolic computations.
Now I would go and help the computer, fortunately for the example that you asked the answer is very easy. The convolution in your example is simply the int_0^t BoxFunction(s) * BoxFunction(t - s) ds. The integrant BoxFunction(s) * BoxFunction(t - s) is again a box function, just not one that goes from [-1,1] but to a smaller interval (that depends on t). Then you only need to integrate the function f(x)=1 over this smaller interval.
Some of those steps you would have to to by hand first, then you could try to re-enter them to Matlab. You don't even need a computer algebra program at all to get to the answer.
Maybe Matematica or Maple could actually solve this problem, remember that the MuPad shipped with Matlab is only a stripped down version of Maple. Maybe the above might still help you, it should give you the idea how things work together. Try to put in a nicer function for f, e.g. a polynomial and you should get it working.

How do I make a function from a symbolic expression in MATLAB?

How can I make a function from a symbolic expression? For example, I have the following:
syms beta
n1,n2,m,aa= Constants
u = sqrt(n2-beta^2);
w = sqrt(beta^2-n1);
a = tan(u)/w+tanh(w)/u;
b = tanh(u)/w;
f = (a+b)*cos(aa*u+m*pi)+a-b*sin(aa*u+m*pi); %# The main expression
If I want to use f in a special program to find its zeroes, how can I convert f to a function? Or, what should I do to find the zeroes of f and such nested expressions?
You have a couple of options...
Option #1: Automatically generate a function
If you have version 4.9 (R2007b+) or later of the Symbolic Toolbox you can convert a symbolic expression to an anonymous function or a function M-file using the matlabFunction function. An example from the documentation:
>> syms x y
>> r = sqrt(x^2 + y^2);
>> ht = matlabFunction(sin(r)/r)
ht =
#(x,y)sin(sqrt(x.^2+y.^2)).*1./sqrt(x.^2+y.^2)
Option #2: Generate a function by hand
Since you've already written a set of symbolic equations, you can simply cut and paste part of that code into a function. Here's what your above example would look like:
function output = f(beta,n1,n2,m,aa)
u = sqrt(n2-beta.^2);
w = sqrt(beta.^2-n1);
a = tan(u)./w+tanh(w)./u;
b = tanh(u)./w;
output = (a+b).*cos(aa.*u+m.*pi)+(a-b).*sin(aa.*u+m.*pi);
end
When calling this function f you have to input the values of beta and the 4 constants and it will return the result of evaluating your main expression.
NOTE: Since you also mentioned wanting to find zeroes of f, you could try using the SOLVE function on your symbolic equation:
zeroValues = solve(f,'beta');
Someone has tagged this question with Matlab so I'll assume that you are concerned with solving the equation with Matlab. If you have a copy of the Matlab Symbolic toolbox you should be able to solve it directly as a previous respondent has suggested.
If not, then I suggest you write a Matlab m-file to evaluate your function f(). The pseudo-code you're already written will translate almost directly into lines of Matlab. As I read it your function f() is a function only of the variable beta since you indicate that n1,n2,m and a are all constants. I suggest that you plot the values of f(beta) for a range of values. The graph will indicate where the 0s of the function are and you can easily code up a bisection or similar algorithm to give you their values to your desired degree of accuracy.
If you broad intention is to have numeric values of certain symbolic expressions you have, for example, you have a larger program that generates symbolic expressions and you want to use these expression for numeric purposes, you can simply evaluate them using 'eval'. If their parameters have numeric values in the workspace, just use eval on your expression. For example,
syms beta
%n1,n2,m,aa= Constants
% values to exemplify
n1 = 1; n2 = 3; m = 1; aa = 5;
u = sqrt(n2-beta^2);
w = sqrt(beta^2-n1);
a = tan(u)/w+tanh(w)/u;
b = tanh(u)/w;
f = (a+b)*cos(aa*u+m*pi)+a-b*sin(aa*u+m*pi); %# The main expression
If beta has a value
beta = 1.5;
eval(beta)
This will calculate the value of f for a particular beta. Using it as a function. This solution will suit you in the scenario of using automatically generated symbolic expressions and will be interesting for fast testing with them. If you are writing a program to find zeros, it will be enough using eval(f) when you have to evaluate the function. When using a Matlab function to find zeros using anonymous function will be better, but you can also wrap the eval(f) inside a m-file.
If you're interested with just the answer for this specific equation, Try Wolfram Alpha, which will give you answers like:
alt text http://www4c.wolframalpha.com/Calculate/MSP/MSP642199013hbefb463a9000051gi6f4heeebfa7f?MSPStoreType=image/gif&s=15
If you want to solve this type of equation programatically, you probably need to use some software packages for symbolic algebra, like SymPy for python.
quoting the official documentation:
>>> from sympy import I, solve
>>> from sympy.abc import x, y
Solve a polynomial equation:
>>> solve(x**4-1, x)
[1, -1, -I, I]
Solve a linear system:
>>> solve((x+5*y-2, -3*x+6*y-15), x, y)
{x: -3, y: 1}