We have an equation similar to the Fredholm integral equation of second kind.
To solve this equation we have been given an iterative solution that is guaranteed to converge for our specific equation. Now our only problem consists in implementing this iterative prodedure in MATLAB.
For now, the problematic part of our code looks like this:
function delta = delta(x,a,P,H,E,c,c0,w)
delt = #(x)delta_a(x,a,P,H,E,c0,w);
for i=1:500
delt = #(x)delt(x) - 1/E.*integral(#(xi)((c(1)-c(2)*delt(xi))*ms(xi,x,a,P,H,w)),0,a-0.001);
end
delta=delt;
end
delta_a is a function of x, and represent the initial value of the iteration. ms is a function of x and xi.
As you might see we want delt to depend on both x (before the integral) and xi (inside of the integral) in the iteration. Unfortunately this way of writing the code (with the function handle) does not give us a numerical value, as we wish. We can't either write delt as two different functions, one of x and one of xi, since xi is not defined (until integral defines it). So, how can we make sure that delt depends on xi inside of the integral, and still get a numerical value out of the iteration?
Do any of you have any suggestions to how we might solve this?
Using numerical integration
Explanation of the input parameters: x is a vector of numerical values, all the rest are constants. A problem with my code is that the input parameter x is not being used (I guess this means that x is being treated as a symbol).
It looks like you can do a nesting of anonymous functions in MATLAB:
f =
#(x)2*x
>> ff = #(x) f(f(x))
ff =
#(x)f(f(x))
>> ff(2)
ans =
8
>> f = ff;
>> f(2)
ans =
8
Also it is possible to rebind the pointers to the functions.
Thus, you can set up your iteration like
delta_old = #(x) delta_a(x)
for i=1:500
delta_new = #(x) delta_old(x) - integral(#(xi),delta_old(xi))
delta_old = delta_new
end
plus the inclusion of your parameters...
You may want to consider to solve a discretized version of your problem.
Let K be the matrix which discretizes your Fredholm kernel k(t,s), e.g.
K(i,j) = int_a^b K(x_i, s) l_j(s) ds
where l_j(s) is, for instance, the j-th lagrange interpolant associated to the interpolation nodes (x_i) = x_1,x_2,...,x_n.
Then, solving your Picard iterations is as simple as doing
phi_n+1 = f + K*phi_n
i.e.
for i = 1:N
phi = f + K*phi
end
where phi_n and f are the nodal values of phi and f on the (x_i).
Related
How do I solve the following system of equations on MATLAB when one of the elements of the variable vector is a constant? Please do give the code if possible.
More generally, if the solution is to use symbolic math, how will I go about generating large number of variables, say 12 (rather than just two) even before solving them?
For example, create a number of symbolic variables using syms, and then make the system of equations like below.
syms a1 a2
A = [matrix]
x = [1;a1;a2];
y = [1;0;0];
eqs = A*x == y
sol = solve(eqs,[a1, a2])
sol.a1
sol.a2
In case you have a system with many variables, you could define all the symbols using syms, and solve it like above.
You could also perform a parameter optimization with fminsearch. First you have to define a cost function, in a separate function file, in this example called cost_fcn.m.
function J = cost_fcn(p)
% make sure p is a vector
p = reshape(p, [length(p) 1]);
% system of equations, can be linear or nonlinear
A = magic(12); % your system, I took some arbitrary matrix
sol = A*p;
% the goal of the system of equations to reach, can be zero, or some other
% vector
goal = zeros(12,1);
% calculate the error
error = goal - sol;
% Use a cost criterion, e.g. sum of squares
J = sum(error.^2);
end
This cost function will contain your system of equations, and goal solution. This can be any kind of system. The vector p will contain the parameters that are being estimated, which will be optimized, starting from some initial guess. To do the optimization, you will have to create a script:
% initial guess, can be zeros, or some other starting point
p0 = zeros(12,1);
% do the parameter optimization
p = fminsearch(#cost_fcn, p0);
In this case p0 is the initial guess, which you provide to fminsearch. Then the values of this initial guess will be incremented, until a minimum to the cost function is found. When the parameter optimization is finished, p will contain the parameters that will result in the lowest error for your system of equations. It is however possible that this is a local minimum, if there is no exact solution to the problem.
Your system is over-constrained, meaning you have more equations than unknown, so you can't solve it. What you can do is find a least square solution, using mldivide. First re-arrange your equations so that you have all the constant terms on the right side of the equal sign, then use mldivide:
>> A = [0.0297 -1.7796; 2.2749 0.0297; 0.0297 2.2749]
A =
0.029700 -1.779600
2.274900 0.029700
0.029700 2.274900
>> b = [1-2.2749; -0.0297; 1.7796]
b =
-1.274900
-0.029700
1.779600
>> A\b
ans =
-0.022191
0.757299
I'm having trouble with implementing double integral in Matlab.
Unlike other double integrals, I need the result of the first (inside) integral to be an expression of the second variable, before going through the second (outside) integral, as it must be powered by k.
For example:
In the example above, I need the result of the inside integral to be expressed as 2y, so that I can calculate (2y)^k, before doing the second (outside) integral.
Does anyone know how to do this in Matlab?
I don't like doing things symbolically, because 99.9% of all problems don't have a closed form solution at all. For 99.9% of the problems that do have a closed-form solution, that solution is unwieldy and hardly useful at all. That may be because of my specific discipline, but I'm going to assume that your problem falls in one of those 99.9% sets, so I'll present the most obvious numerical way to do this.
And that is, integrate a function which calls integral itself:
function dbl_int()
f = #(x,y) 2.*x.*y + 1;
k = 1;
x_limits = [0 1];
y_limits = [1 2];
val = integral(#(y) integrand(f, y, k, x_limits), ...
y_limits(1), y_limits(2));
end
function val = integrand(f, y, k, x_limits)
val = zeros(size(y));
for ii = 1:numel(y)
val(ii) = integral(#(x) f(x,y(ii)), ...
x_limits(1), x_limits(2));
end
val = val.^k;
end
I have the equation of the lognormal:
y = 1/(3.14*x*sig)*exp(-(log(x)-mu)^2/(2*sig^2))
and for fixed
y = a
x = b
I need to find the values of mu and sig. I can set mu in Matlab like:
mu = [0 1 1.1 1.2...]
and find all the values corresponding sig values, but I can't make it with solve or subs. Any ideas please???
Thanks!
Here's a proof of concept to use fzero to numerically search for a sigma(x,y,mu) function.
Assuming you have x,y fixed, you can set
mu = 1; %or whatever
myfun = #(sig) y-1./(3.14*x*sig).*exp(-(log(x)-mu)^2./(2*sig.^2)); %x,y,mu from workspace
sigma = fzero(myfun,1);
This will solve the equation
y-1/(3.14*x*sig)*exp(-(log(x)-mu)^2/(2*sig^2))==0
for sig starting from sig==1 and return it into sigma.
You can generalize it to get a function of mu:
myfun2 = #(mu,sig) y-1./(3.14*x*sig).*exp(-(log(x)-mu).^2./(2*sig.^2));
sigmafun=#(mu) fzero(#(sig)myfun2(mu,sig),1);
then sigmafun will give you a sigma for each value of mu you put into it. The parameters x and y are assumed to be set before the first anonymous function declaration.
Or you could get reaaally general, and define
myfun3 = #(x,y,mu,sig) y-1./(3.14*x*sig).*exp(-(log(x)-mu).^2./(2*sig.^2));
sigmafun2 = #(x,y,mu) fzero(#(sig)myfun3(x,y,mu,sig),1);
The main difference here is that x and y are fed into the function of sigmafun2 each time, so they can change. In the earlier cases the values of x and y were fixed in the anonymous functions at the time of their definition, i.e. when we issued myfun = #(sig).... Depending on your needs you can find out what you want to use.
As a proof of concept, I didn't check how well it behaved for the actual problem. You should definitely have an initial idea of what kind of parameters you expect, since there will be many cases where there's no solution, and fzero will return a NaN.
Update by Oliver Amundsen: the resulting sig(mu) function with x=100, y=0.001 looks like this:
I have data like this:
y = [0.001
0.0042222222
0.0074444444
0.0106666667
0.0138888889
0.0171111111
0.0203333333
0.0235555556
0.0267777778
0.03]
and
x = [3.52E-06
9.72E-05
0.0002822918
0.0004929136
0.0006759156
0.0008199029
0.0009092797
0.0009458332
0.0009749509
0.0009892005]
and I want y to be a function of x with y = a(0.01 − b*n^−cx).
What is the best and easiest computational approach to find the best combination of the coefficients a, b and c that fit to the data?
Can I use Octave?
Your function
y = a(0.01 − b*n−cx)
is in quite a specific form with 4 unknowns. In order to estimate your parameters from your list of observations I would recommend that you simplify it
y = β1 + β2β3x
This becomes our objective function and we can use ordinary least squares to solve for a good set of betas.
In default Matlab you could use fminsearch to find these β parameters (lets call it our parameter vector, β), and then you can use simple algebra to get back to your a, b, c and n (assuming you know either b or n upfront). In Octave I'm sure you can find an equivalent function, I would start by looking in here: http://octave.sourceforge.net/optim/index.html.
We're going to call fminsearch, but we need to somehow pass in your observations (i.e. x and y) and we will do that using anonymous functions, so like example 2 from the docs:
beta = fminsearch(#(x,y) objfun(x,y,beta), beta0) %// beta0 are your initial guesses for beta, e.g. [0,0,0] or [1,1,1]. You need to pick these to be somewhat close to the correct values.
And we define our objective function like this:
function sse = objfun(x, y, beta)
f = beta(1) + beta(2).^(beta(3).*x);
err = sum((y-f).^2); %// this is the sum of square errors, often called SSE and it is what we are trying to minimise!
end
So putting it all together:
y= [0.001; 0.0042222222; 0.0074444444; 0.0106666667; 0.0138888889; 0.0171111111; 0.0203333333; 0.0235555556; 0.0267777778; 0.03];
x= [3.52E-06; 9.72E-05; 0.0002822918; 0.0004929136; 0.0006759156; 0.0008199029; 0.0009092797; 0.0009458332; 0.0009749509; 0.0009892005];
beta0 = [0,0,0];
beta = fminsearch(#(x,y) objfun(x,y,beta), beta0)
Now it's your job to solve for a, b and c in terms of beta(1), beta(2) and beta(3) which you can do on paper.
I have the following ODE:
x_dot = 3*x.^0.5-2*x.^1.5 % (Equation 1)
I am using ode45 to solve it. My solution is given as a vector of dim(k x 1) (usually k = 41, which is given by the tspan).
On the other hand, I have made a model that approximates the model from (1), but in order to compare how accurate this second model is, I want to solve it (solve the second ODE) by means of ode45. My problem is that this second ode is given discrete:
x_dot = f(x) % (Equation 2)
f is discrete and not a continuous function like in (1). The values I have for f are:
0.5644
0.6473
0.7258
0.7999
0.8697
0.9353
0.9967
1.0540
1.1072
1.1564
1.2016
1.2429
1.2803
1.3138
1.3435
1.3695
1.3917
1.4102
1.4250
1.4362
1.4438
1.4477
1.4482
1.4450
1.4384
1.4283
1.4147
1.3977
1.3773
1.3535
1.3263
1.2957
1.2618
1.2246
1.1841
1.1403
1.0932
1.0429
0.9893
0.9325
0.8725
What I want now is to solve this second ode using ode45. Hopefully I will get a solution very similar that the one from (1). How can I solve a discrete ode applying ode45? Is it possible to use ode45? Otherwise I can use Runge-Kutta but I want to be fair comparing the two methods, which means that I have to solve them by the same way.
You can use interp1 to create an interpolated lookup table function:
fx = [0.5644 0.6473 0.7258 0.7999 0.8697 0.9353 0.9967 1.0540 1.1072 1.1564 ...
1.2016 1.2429 1.2803 1.3138 1.3435 1.3695 1.3917 1.4102 1.4250 1.4362 ...
1.4438 1.4477 1.4482 1.4450 1.4384 1.4283 1.4147 1.3977 1.3773 1.3535 ...
1.3263 1.2957 1.2618 1.2246 1.1841 1.1403 1.0932 1.0429 0.9893 0.9325 0.8725];
x = 0:0.25:10
f = #(xq)interp1(x,fx,xq);
Then you should be able to use ode45 as normal:
tspan = [0 1];
x0 = 2;
xout = ode45(#(t,x)f(x),tspan,x0);
Note that you did not specify what values of of x your function (fx here) is evaluated over so I chose zero to ten. You'll also not want to use the copy-and-pasted values from the command window of course because they only have four decimal places of accuracy. Also, note that because ode45 required the inputs t and then x, I created a separate anonymous function using f, but f can created with an unused t input if desired.