I have the equation 1 = ((π r2)n) / n! ∙ e(-π r2)
I want to solve it using MATLAB. Is the following the correct code for doing this? The answer isn't clear to me.
n= 500;
A= 1000000;
d= n / A;
f= factorial( n );
solve (' 1 = ( d * pi * r^2 )^n / f . exp(- d * pi * r^2) ' , 'r')
The answer I get is:
Warning: The solutions are parametrized by the symbols:
k = Z_ intersect Dom::Interval([-(PI/2 -
Im(log(`fexp(-PI*d*r^2)`)/n)/2)/(PI*Re(1/n))], (PI/2 +
Im(log(`fexp(-PI*d*r^2)`)/n)/2)/(PI*Re(1/n)))
> In solve at 190
ans =
(fexp(-PI*d*r^2)^(1/n))^(1/2)/(pi^(1/2)*d^(1/2)*exp((pi*k*(2*i))/n)^(1/2))
-(fexp(-PI*d*r^2)^(1/n))^(1/2)/(pi^(1/2)*d^(1/2)*exp((pi*k*(2*i))/n)^(1/2))
You have several issues with your code.
1. First, you're evaluating some parts in floating-point. This isn't always bad as long as you know the solution will be exact. However, factorial(500) overflows to Inf. In fact, for factorial, anything bigger than 170 will overflow and any input bigger than 21 is potentially inexact because the result will be larger than flintmax. This calculation should be preformed symbolically via sym/factorial:
n = sym(500);
f = factorial(n);
which returns an integer approximately equal to 1.22e1134 for f.
2. You're using a period ('.') to specify multiplication. In MuPAD, upon which most of the symbolic math functions are based, a period is shorthand for concatenation.
Additionally, as is stated in the R2015a documentation (and possibly earlier):
String inputs will be removed in a future release. Use syms to declare the variables instead, and pass them as a comma-separated list or vector.
If you had not used a string, I don't think that it would have been possible for your command to get misinterpreted and return such a confusing result. Here is how you could use solve with symbolic variables:
syms r;
n = sym(500);
A = sym(1000000);
d = n/A;
s = solve(1==(d*sym(pi)*r^2)^n/factorial(n)*exp(-d*sym(pi)*r^2),r)
which, after several minutes, returns a 1,000-by-1 vector of solutions, all of which are complex. As #BenVoigt suggests, you can try the 'Real' option for solve. However, in R2015a at least, the four solutions returned in terms of lambertw don't appear to actually be real.
A couple things to note:
MATLAB is not using the values of A, d, and f from your workspace.
f . exp is not doing at all what you wanted, which was multiplication. It's instead becoming an unknown function fexp
Passing additional options of 'Real', true to solve gets rid of most of these extraneous conditions.
You probably should avoid calling the version of solve which accepts a string, and use the Symbolic Toolbox instead (syms 'r')
Related
Can anybody help me with this assignment please?
I am new to matlab, and passing this year depends on this assignment, i don't have much time to explore matlab and i already wasted alot of time trying to do this assignment in my way.
I have already wrote the equations on the paper, but transfering the equations into matlab codes is really hard for me.
All i have for now is:
syms h
l = (0.75-h.^2)/(3*sqrt((5*h.^2)/4)); %h is h_max
V_default = (h.^2/2)*l;
dv = diff(V_default); %it's max. when the derivative is max.
h1 = solve( dv ==0);
h_max = (h1>0);
l_max = (0.75-h_max.^2)/(3*sqrt((h_max/2).^2+(h_max.^2)));
V_max = ((h_max.^2)./(2.*l_max));
but it keep give me error "Error using ./
Matrix dimensions must agree.
Error in triangle (line 9)
V_max = ((h_max.^2)./(2.*l_max)); "
Not really helping with the assignment here, but with the Matlab syntax. In the following line:
l_max = (0.75-h_max.^2)/(3*sqrt((h_max/2).^2+(h_max.^2)));
you're using / that is a matrix divide. You might want to use ./ which will divide the terms element by element. If I do this
l_max = (0.75-h_max.^2) ./ (3*sqrt((h_max/2).^2+(h_max.^2)));
then your code doesn't return any error. But I have no idea if it's the correct solution of your assignment, I'll leave that to you!
In line 5, the result h1 is a vector of two values but the variable itself remains symbolic, from the Symbolic Math Toolbox. MATLAB treats such variables slightly different. For that reason, the line h_max = (h1>0) doesn't really do what you expect. As I think from this point, you are interested in one value h_max, I would convert h1 to a regular MATLAB variable and change your code to the following:
h1 = double(solve( dv ==0)); % converts symbolic to regular vectors
h_max = h1(h1>0); % filters out all negative and zero values
l_max = (0.75-h_max.^2)/(3*sqrt((h_max/2).^2+(h_max.^2)));
V_max = ((h_max.^2)./(2.*l_max));
EDIT.
If you still have error, it means solve( ...) returns more than 1 positive values. In this case, as suggested, use dotted operations, such as ./ but the results in l_max and V_max will not be a single value but vectors of the same size as h_max. Which means you don't have one max Volume.
let say that from given function f(t), we want to construct new function which is given from existed function by this way
where T is some constant let say T=3; of course k can't be from -infinity to infinity in reality because we can't do infinity summation using computer,so it is first my afford
first let us define our function
function y=f(t);
y=-1/(t^2);
end
and second program
k=-1000:1:999;
F=zeros(1,length(k));
T=3;
for t=1:length(k)
F(t)=sum(f(t+k*T));
end
but when i am running second program ,i am getting
>> program
Error using ^
Inputs must be a scalar and a square matrix.
To compute elementwise POWER, use POWER (.^) instead.
Error in f (line 2)
y=-1/(t^2);
Error in program (line 5)
F(t)=sum(f(t+k*T));
so i have two question related to this program :
1.first what is error why it shows me mistake
how can i do it in excel? can i simplify it somehow? thanks in advance
EDITED :
i have changed my code by this way
k=-1000:1:999;
F=zeros(1,length(k));
T=3;
for t=1:length(k)
result=0;
for l=1:length(k)
result=result+f(t+k(l)*T);
end
F(t)=result;
end
is it ok?
To solve your problem in a vectorized way, you'll have to change the function f such that it can be called with vectors as input. This is, as #patrik suggested, achieved by using the element-wise operators .* ./ .^ (Afaik, no .+ .- exist). Unfortunately the comment of #rayryeng is not entirely correct, which may have lead to confusion. The correct way is to use the element-wise operators for both the division ./ and the square .^:
function y = f(t)
y = -1 ./ (t.^2);
end
Your existing code (first version)
k = -1000:1:999;
F = zeros(1,length(k));
T = 3;
for t=1:length(k)
F(t) = sum(f(t+k*T));
end
then works as expected (and is much faster then the version you posted in the edit).
You can even eliminate the for loop and use arrayfun instead. For simple functions f, you can also use function handles instead of creating a separate file. This gives
f = #(t) -1 ./ (t.^2);
k = -1000:1:999;
t = 1:2000;
T = 3;
F = arrayfun(#(x)sum(f(x+k*T)), t);
and is even faster and a simple one-liner. arrayfun takes any function handle as first input. We create a function handle which takes an argument x and does the sum over all k: #(x) sum(f(x+k*T). The second argument, the vector t, contains all values for which the function handle is evaluated.
As proposed by #Divakar in comments, you can also use the bsxfun function:
f = #(t) -1 ./ (t.^2);
k = -1000:1:999;
t = 1:2000;
T = 3;
F = sum(f(bsxfun(#plus,k*T,t.')),2);
where bsxfun creates a matrix containing all combinations between t and k*T, they are all evaluated using f(...) and last, the sum along the second dimension sums over all k's.
Benchmarking
Lets compare these solutions:
Combination of for loop and sum (original question):
Elapsed time is 0.043969 seconds.
Go through all combinations in 2 for loops (edited question):
Elapsed time is 1.367181 seconds.
Vectorized approach with arrayfun:
Elapsed time is 0.063748 seconds.
Vectorized approach with bsxfun as proposed by #Divakar:
Elapsed time is 0.099399 seconds.
So (sadly) the first solution including a for loop beats both vectorized approaches. For larger k vectors (-10000:1:9999), this behavior can be reproduced. The conclusion seems to be that MATLAB has indeed learned how to optimize for loops.
I am a fairly new Matlab user which I had to explore to numerically integrate a system of differential equations. Now I am trying to resolve a simple equation but which gives me a "lambertw" output.
(s - 1) * exp(-s) = k
Therefore, for a given k, with k < exp(2) I should get approximately two different values of "s". Here is the bit of code I use for this task (using symbolic toolbox):
%%Hopf bifurcation calculations
syms s
solve((s-1) * exp(-s) == k, s)
%uhopf = s*k
And the output:
1 - lambertw(0, -(3*exp(1))/25)
After looking at some examples I tried to get an explicit solution with no success:
syms x
x=solve('(s-1)*exp(-s) == k')
Finally, my question is how do I change the result given in the first place into a simple numerical value that fir a given k would give me s1 and s2. Any hint or help would be much appreciated ! I am still looking at some other examples.
If I understand your question correctly, you can use the eval() function to evaluate the string to retrieve a simple numerical example.
e.g.
char s;
char k;
A=solve('(s-1) * exp(-s) = k', 'k=exp(1)');
sol_s=A.s(1);
sol_k=A.k(1);
ans=eval(sol_s)
We have an equation similar to the Fredholm integral equation of second kind.
To solve this equation we have been given an iterative solution that is guaranteed to converge for our specific equation. Now our only problem consists in implementing this iterative prodedure in MATLAB.
For now, the problematic part of our code looks like this:
function delta = delta(x,a,P,H,E,c,c0,w)
delt = #(x)delta_a(x,a,P,H,E,c0,w);
for i=1:500
delt = #(x)delt(x) - 1/E.*integral(#(xi)((c(1)-c(2)*delt(xi))*ms(xi,x,a,P,H,w)),0,a-0.001);
end
delta=delt;
end
delta_a is a function of x, and represent the initial value of the iteration. ms is a function of x and xi.
As you might see we want delt to depend on both x (before the integral) and xi (inside of the integral) in the iteration. Unfortunately this way of writing the code (with the function handle) does not give us a numerical value, as we wish. We can't either write delt as two different functions, one of x and one of xi, since xi is not defined (until integral defines it). So, how can we make sure that delt depends on xi inside of the integral, and still get a numerical value out of the iteration?
Do any of you have any suggestions to how we might solve this?
Using numerical integration
Explanation of the input parameters: x is a vector of numerical values, all the rest are constants. A problem with my code is that the input parameter x is not being used (I guess this means that x is being treated as a symbol).
It looks like you can do a nesting of anonymous functions in MATLAB:
f =
#(x)2*x
>> ff = #(x) f(f(x))
ff =
#(x)f(f(x))
>> ff(2)
ans =
8
>> f = ff;
>> f(2)
ans =
8
Also it is possible to rebind the pointers to the functions.
Thus, you can set up your iteration like
delta_old = #(x) delta_a(x)
for i=1:500
delta_new = #(x) delta_old(x) - integral(#(xi),delta_old(xi))
delta_old = delta_new
end
plus the inclusion of your parameters...
You may want to consider to solve a discretized version of your problem.
Let K be the matrix which discretizes your Fredholm kernel k(t,s), e.g.
K(i,j) = int_a^b K(x_i, s) l_j(s) ds
where l_j(s) is, for instance, the j-th lagrange interpolant associated to the interpolation nodes (x_i) = x_1,x_2,...,x_n.
Then, solving your Picard iterations is as simple as doing
phi_n+1 = f + K*phi_n
i.e.
for i = 1:N
phi = f + K*phi
end
where phi_n and f are the nodal values of phi and f on the (x_i).
I am writing my own code for the pdf of the multivariate t-distribution in Matlab.
There is a piece of code that includes the gamma function.
gamma((nu+D)/2) / gamma(nu/2)
The problem is that nu=1000, and so I get Inf from the gamma function.
It seems I will have to use some mathematical property of the gamma
function to rewrite it in a different way.
Thanks for any suggestions
You can use the function gammaln(x), which is the equivalent of log(gamma(x)) but avoids the overflow issue. The function you wrote is equivalent to:
exp(gammaln((nu+D)/2) - gammaln(nu/2))
The number gamma(1000/2) is larger than the maximum number MATLAB support. Thus it shows 'inf'. To see the maximum number in MATLAB, check realmax. For your case, if D is not very large, you will have to rewrite your formula. Let us assume that in your case 'D' is an even number. Then the formula you have will be: nu/2 * (nu/2 -1) * ....* (nu/2 - D/2 + 1).
sum1 = 1
for i = 1:D/2
sum1 = sum1*(nu/2 - i+1);
end
Then sum1 will be the result you want.