I was tired of always doing something like the following in order to do database access using slick for each of my domain entities.
database withSession {
implicit session =>
val entities = TableQuery[EntityTable]
val id = //Some ID
val q = for {
e <- entities if e.id === id
} yield (e)
val entity = q.first
}
(Note: EntityTable was defined like described here)
So I decided that I want a generic database access object that handles this for me. The usage should look something like
[...]
val entityDAO = new GenericDAO[Entity, EntityTable, String]()
[...]
database withSession { implicit session =>
val id = // Some ID
val entity = entityDAO.get(id)
}
My try of the implementation of the GenericDAO looks like this
class GenericDAO[T, TB, PK](implicit session: Session) {
val entities = TableQuery[TB] // Line 1
def get(id: PK): T = {
val q = for {
e <- entities
} yield (e)
val res: T = q.first
res
}
}
But line 1 leaves me with a compiler error stating that something is wrong with the TB argument.
Multiple markers at this line
- type arguments [TB] conform to the bounds of none of the overloaded alternatives of value apply: [E <:
scala.slick.lifted.AbstractTable[]]=>
scala.slick.lifted.TableQuery[E,E#TableElementType] [E <:
scala.slick.lifted.AbstractTable[]](cons: scala.slick.lifted.Tag =>
E)scala.slick.lifted.TableQuery[E,E#TableElementType]
- wrong number of type parameters for overloaded method value apply with alternatives: [E <: scala.slick.lifted.AbstractTable[]]=>
scala.slick.lifted.TableQuery[E,E#TableElementType] [E <:
scala.slick.lifted.AbstractTable[]](cons: scala.slick.lifted.Tag =>
E)scala.slick.lifted.TableQuery[E,E#TableElementType]
Any suggesions on this issue? Or maybe I am wrong and it is supposed to be implemented in another way. I am open for any solution. Thanks!
First of all, you could write
val entities = TableQuery[EntityTable] // put in a central place for re-use
and then
database.withSession(
(for {
e <- entities if e.id === /*Some ID*/
} yield e).first()(_)
)
or this
database.withSession(entities.filter(_.id === /*Some ID*/).first()(_))
or this
val get = entities.findBy(_.id) // <- reuse this
database.withSession(get(/*Some ID*/).first()(_))
for brevity. This probably makes your whole DAO unnecessary (which is great :)!).
Regarding the error message you got. TableQuery[TB]is a macro, which is a short-hand for TableQuery(tag => new TB(tag)), TB must be a Table and support object creation. You cannot just use the TableQuery macro on an unconstrained type parameter your got from a DAO wrapper. You could constraint TB <: Table[_] but it still wouldn't support object creation, which you cannot constraint in Scala. You could only provide a factory to your DAO (a common pattern is to fetch one as an implicit argument), but that all does not make sense, when you can just write your TableQuery once and store it in a globally accessible place.
Update:
The shortcut works for all of these methods the same way. It's plain Scala. You just turn the method into a function and pass it to the higher-order function withSession, which requires a function from session to anything. Just be aware, that some Slick methods have an empty argument list, which requires ()(_) to turn them into a function and some only have the implicit argument list, which requires only (_). E.g. database.withSession(entities.filter(_.id === /*Some ID*/).delete(_)).
If you wonder about the _. Scala distinguishes methods from functions. def foo(a: A, b: B, ...): R is a method but can be turned into a function of type (A,B,C) => R using foo _. This conversion is called eta expansion and googling for it will turn up more info. Sometimes when a function expected, but you provide a method, the Scala compiler infers the _ and you don't have to write it explicitly. You can also provide some parameters and use _ in place of the parameters you don't want to apply yet. In that case you partially apply the method and get a function back. This is what we do here. We use _ in the place where the methods usually expect a session and get a function back that takes a session. When exactly you have to use _ or (_) or ()(_) has to do with the method signatures and the details interplay between implicit argument lists, nullary methods, methods with empty argument lists, which is general Scala knowledge worth researching at some point.
This was a huge help to me. A complete working generic dao https://gist.github.com/lshoo/9785645
Related
I am trying to understand how a case class can be passed as an argument to a function which accepts functions as arguments. Below is an example:
Consider the below function
def !![B](h: Out[B] => A): In[B] = { ... }
If I understood correctly, this is a polymorphic method which has a type parameter B and accepts a function h as a parameter. Out and In are other two classes defined previously.
This function is then being used as shown below:
case class Q(p: boolean)(val cont: Out[R])
case class R(p: Int)
def g(c: Out[Q]) = {
val rin = c !! Q(true)_
...
}
I am aware that currying is being used to avoid writing the type annotation and instead just writing _. However, I cannot grasp why and how the case class Q is transformed to a function (h) of type Out[B] => A.
EDIT 1 Updated !! above and the In and Out definitions:
abstract class In[+A] {
def future: Future[A]
def receive(implicit d: Duration): A = {
Await.result[A](future, d)
}
def ?[B](f: A => B)(implicit d: Duration): B = {
f(receive)
}
}
abstract class Out[-A]{
def promise[B <: A]: Promise[B]
def send(msg: A): Unit = promise.success(msg)
def !(msg: A) = send(msg)
def create[B](): (In[B], Out[B])
}
These code samples are taken from the following paper: http://drops.dagstuhl.de/opus/volltexte/2016/6115/
TLDR;
Using a case class with multiple parameter lists and partially applying it will yield a partially applied apply call + eta expansion will transform the method into a function value:
val res: Out[Q] => Q = Q.apply(true) _
Longer explanation
To understand the way this works in Scala, we have to understand some fundamentals behind case classes and the difference between methods and functions.
Case classes in Scala are a compact way of representing data. When you define a case class, you get a bunch of convenience methods which are created for you by the compiler, such as hashCode and equals.
In addition, the compiler also generates a method called apply, which allows you to create a case class instance without using the new keyword:
case class X(a: Int)
val x = X(1)
The compiler will expand this call to
val x = X.apply(1)
The same thing will happen with your case class, only that your case class has multiple argument lists:
case class Q(p: boolean)(val cont: Out[R])
val q: Q = Q(true)(new Out[Int] { })
Will get translated to
val q: Q = Q.apply(true)(new Out[Int] { })
On top of that, Scala has a way to transform methods, which are a non value type, into a function type which has the type of FunctionX, X being the arity of the function. In order to transform a method into a function value, we use a trick called eta expansion where we call a method with an underscore.
def foo(i: Int): Int = i
val f: Int => Int = foo _
This will transform the method foo into a function value of type Function1[Int, Int].
Now that we posses this knowledge, let's go back to your example:
val rin = c !! Q(true) _
If we just isolate Q here, this call gets translated into:
val rin = Q.apply(true) _
Since the apply method is curried with multiple argument lists, we'll get back a function that given a Out[Q], will create a Q:
val rin: Out[R] => Q = Q.apply(true) _
I cannot grasp why and how the case class Q is transformed to a function (h) of type Out[B] => A.
It isn't. In fact, the case class Q has absolutely nothing to do with this! This is all about the object Q, which is the companion module to the case class Q.
Every case class has an automatically generated companion module, which contains (among others) an apply method whose signature matches the primary constructor of the companion class, and which constructs an instance of the companion class.
I.e. when you write
case class Foo(bar: Baz)(quux: Corge)
You not only get the automatically defined case class convenience methods such as accessors for all the elements, toString, hashCode, copy, and equals, but you also get an automatically defined companion module that serves both as an extractor for pattern matching and as a factory for object construction:
object Foo {
def apply(bar: Baz)(quux: Corge) = new Foo(bar)(quux)
def unapply(that: Foo): Option[Baz] = ???
}
In Scala, apply is a method that allows you to create "function-like" objects: if foo is an object (and not a method), then foo(bar, baz) is translated to foo.apply(bar, baz).
The last piece of the puzzle is η-expansion, which lifts a method (which is not an object) into a function (which is an object and can thus be passed as an argument, stored in a variable, etc.) There are two forms of η-expansion: explicit η-expansion using the _ operator:
val printFunction = println _
And implicit η-expansion: in cases where Scala knows 100% that you mean a function but you give it the name of a method, Scala will perform η-expansion for you:
Seq(1, 2, 3) foreach println
And you already know about currying.
So, if we put it all together:
Q(true)_
First, we know that Q here cannot possibly be the class Q. How do we know that? Because Q here is used as a value, but classes are types, and like most programming languages, Scala has a strict separation between types and values. Therefore, Q must be a value. In particular, since we know class Q is a case class, object Q is the companion module for class Q.
Secondly, we know that for a value Q
Q(true)
is syntactic sugar for
Q.apply(true)
Thirdly, we know that for case classes, the companion module has an automatically generated apply method that matches the primary constructor, so we know that Q.apply has two parameter lists.
So, lastly, we have
Q.apply(true) _
which passes the first argument list to Q.apply and then lifts Q.apply into a function which accepts the second argument list.
Note that case classes with multiple parameter lists are unusual, since only the parameters in the first parameter list are considered elements of the case class, and only elements benefit from the "case class magic", i.e. only elements get accessors implemented automatically, only elements are used in the signature of the copy method, only elements are used in the automatically generated equals, hashCode, and toString() methods, and so on.
I have a following question. Our project has a lot of code, that runs tests in Scala. And there is a lot of code, that fills the fields like this:
production.setProduct(new Product)
production.getProduct.setUuid("b1253a77-0585-291f-57a4-53319e897866")
production.setSubProduct(new SubProduct)
production.getSubProduct.setUuid("89a877fa-ddb3-3009-bb24-735ba9f7281c")
Eventually, I grew tired from this code, since all those fields are actually subclasses of the basic class that has the uuid field, so, after thinking a while, I wrote the auxiliary function like this:
def createUuid[T <: GenericEntity](uuid: String)(implicit m : Manifest[T]) : T = {
val constructor = m.runtimeClass.getConstructors()(0)
val instance = constructor.newInstance().asInstanceOf[T]
instance.setUuid(uuid)
instance
}
Now, my code got two times shorter, since now I can write something like this:
production.setProduct(createUuid[Product]("b1253a77-0585-291f-57a4-53319e897866"))
production.setSubProduct(createUuid[SubProduct]("89a877fa-ddb3-3009-bb24-735ba9f7281c"))
That's good, but I am wondering, if I could somehow implement the function createUuid so the last bit would like this:
// Is that really possible?
production.setProduct(createUuid("b1253a77-0585-291f-57a4-53319e897866"))
production.setSubProduct(createUuid("89a877fa-ddb3-3009-bb24-735ba9f7281c"))
Can scala compiler guess, that setProduct expects not just a generic entity, but actually something like Product (or it's subclass)? Or there is no way in Scala to implement this even shorter?
Scala compiler won't infer/propagate the type outside-in. You could however create implicit conversions like:
implicit def stringToSubProduct(uuid: String): SubProduct = {
val n = new SubProduct
n.setUuid(uuid)
n
}
and then just call
production.setSubProduct("89a877fa-ddb3-3009-bb24-735ba9f7281c")
and the compiler will automatically use the stringToSubProduct because it has applicable types on the input and output.
Update: To have the code better organized I suggest wrapping the implicit defs to a companion object, like:
case class EntityUUID(uuid: String) {
uuid.matches("[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}") // possible uuid format check
}
case object EntityUUID {
implicit def toProduct(e: EntityUUID): Product = {
val p = new Product
p.setUuid(e.uuid)
p
}
implicit def toSubProduct(e: EntityUUID): SubProduct = {
val p = new SubProduct
p.setUuid(e.uuid)
p
}
}
and then you'd do
production.setProduct(EntityUUID("b1253a77-0585-291f-57a4-53319e897866"))
so anyone reading this could have an intuition where to find the conversion implementation.
Regarding your comment about some generic approach (having 30 types), I won't say it's not possible, but I just do not see how to do it. The reflection you used bypasses the type system. If all the 30 cases are the same piece of code, maybe you should reconsider your object design. Now you can still implement the 30 implicit defs by calling some method that uses reflection similar what you have provided. But you will have the option to change it in the future on just this one (30) place(s).
I'm trying to write a quick data browser for a database using Squeryl but I have difficulty iterating over all the tables in a generic way. Based on the Squeryl SchoolDb example i tried the following:
def browseTable(name: String) = {
SchoolDb.tables.find(_.name == name) map { t=>
val fields = t.posoMetaData.fieldsMetaData
val rows = from (t) (s => select(s))
// Print the columns
println(fields.map(_.columnName).mkString("\t"))
rows map { row =>
println(fields.map(f => f.get(row)).mkstring("\t"))
}
}
The compiler is not very happy with this attempt (Missing type type for 'row') and I can sort-of understand its dilemma. Explicitly declaring the parametr as Any just changes the comilation error to "No implicit view available from Any => org.squeryl.dsl.ast.TypedExpressionNode[_]" on 'f.get(row)'
How Can I either fix this issue or change the models (maybe adding a trait of some sort) to enable generic access to all data in all tables?
The compiler complains because f.get method expects an AnyRef parameter. AFAIK, in Scala everything can be safely cast to AnyRef - the compiler will force necessary boxing if needed. So I think this should work: f.get(row.asInstanceOf[AnyRef])
EDIT: I just tested this and it works.
I'm trying to generalize setting up Squeryl (Slick poses the same problems AFAIK). I want to avoid having to name every case class explicitly for a number of general methods.
table[Person]
table[Bookmark]
etc.
This also goes for generating indexes, and creating wrapper methods around the CRUD methods for every case class.
So ideally what I want to do is have a list of classes and make them into tables, add indexes and add a wrapper method:
val listOfClasses = List(classOf[Person], classOf[Bookmark])
listOfClasses.foreach(clazz => {
val tbl = table[clazz]
tbl.id is indexed
etc.
})
I thought Scala Macros would be the thing to apply here, since I don't think you can have values as type parameters. Also I need to generate methods for every type of the form:
def insert(model: Person): Person = persons.insert(model)
I've got my mits on an example on Macros but I don't know how to generate a generic datastructure.
I got this simple example to illustrate what I want:
def makeList_impl(c: Context)(clazz: c.Expr[Class[_]]): c.Expr[Unit] = {
import c.universe._
reify {
println(List[clazz.splice]()) // ERROR: error: type splice is not a member of c.Expr[Class[_]]
}
}
def makeList(clazz: Class[_]): Unit = macro makeList_impl
How do I do this? Or is Scala Macros the wrong tool?
Unfortunately, reify is not flexible enough for your use case, but there's good news. In macro paradise (and most likely in 2.11.0) we have a better tool to construct trees, called quasiquotes: http://docs.scala-lang.org/overviews/macros/quasiquotes.html.
scala> def makeList_impl(c: Context)(clazz: c.Expr[Class[_]]): c.Expr[Any] = {
| import c.universe._
| val ConstantType(Constant(tpe: Type)) = clazz.tree.tpe
| c.Expr[Any](q"List[$tpe]()")
| }
makeList_impl: (c: scala.reflect.macros.Context)(clazz: c.Expr[Class[_]])c.Expr[Any]
scala> def makeList(clazz: Class[_]): Any = macro makeList_impl
defined term macro makeList: (clazz: Class[_])Any
scala> makeList(classOf[Int])
res2: List[Int] = List()
scala> makeList(classOf[String])
res3: List[String] = List()
Quasiquotes are even available in 2.10.x with a minor tweak to the build process (http://docs.scala-lang.org/overviews/macros/paradise.html#macro_paradise_for_210x), so you might want to give them a try.
This will probably not fill all your needs here, but it may help a bit:
The signature of table method looks like this:
protected def table[T]()(implicit manifestT: Manifest[T]): Table[T]
As you can see, it takes implicit Manifest object. That object is passed automatically by the compiler and contains information about type T. This is actually what Squeryl uses to inspect database entity type.
You can just pass these manifests explicitly like this:
val listOfManifests = List(manifest[Person], manifest[Bookmark])
listOfManifests.foreach(manifest => {
val tbl = table()(manifest)
tbl.id is indexed
etc.
})
Unfortunately tbl in this code will have type similar to Table[_ <: CommonSupertypeOfAllGivenEntities] which means that all operations on it must be agnostic of concrete type of database entity.
I've been working with Scala Macros and have the following code in the macro:
val fieldMemberType = fieldMember.typeSignatureIn(objectType) match {
case NullaryMethodType(tpe) => tpe
case _ => doesntCompile(s"$propertyName isn't a field, it must be another thing")
}
reify{
new TypeBuilder() {
type fieldType = fieldMemberType.type
}
}
As you can see, I've managed to get a c.universe.Type fieldMemberType. This represents the type of certain field in the object. Once I get that, I want to create a new TypeBuilder object in the reify. TypeBuilder is an abstract class with an abstract parameter. This abstract parameter is fieldType. I want this fieldType to be the type that I've found before.
Running the code shown here returns me a fieldMemberType not found. Is there any way that I can get the fieldMemberType to work inside the reify clause?
The problem is that the code you pass to reify is essentially going to be placed verbatim at the point where the macro is being expanded, and fieldMemberType isn't going to mean anything there.
In some cases you can use splice to sneak an expression that you have at macro-expansion time into the code you're reifying. For example, if we were trying to create an instance of this trait:
trait Foo { def i: Int }
And had this variable at macro-expansion time:
val myInt = 10
We could write the following:
reify { new Foo { def i = c.literal(myInt).splice } }
That's not going to work here, which means you're going to have to forget about nice little reify and write out the AST by hand. You'll find this happens a lot, unfortunately. My standard approach is to start a new REPL and type something like this:
import scala.reflect.runtime.universe._
trait TypeBuilder { type fieldType }
showRaw(reify(new TypeBuilder { type fieldType = String }))
This will spit out several lines of AST, which you can then cut and paste into your macro definition as a starting point. Then you fiddle with it, replacing things like this:
Ident(TypeBuilder)
With this:
Ident(newTypeName("TypeBuilder"))
And FINAL with Flag.FINAL, and so on. I wish the toString methods for the AST types corresponded more exactly to the code it takes to build them, but you'll pretty quickly get a sense of what you need to change. You'll end up with something like this:
c.Expr(
Block(
ClassDef(
Modifiers(Flag.FINAL),
anon,
Nil,
Template(
Ident(newTypeName("TypeBuilder")) :: Nil,
emptyValDef,
List(
constructor(c),
TypeDef(
Modifiers(),
newTypeName("fieldType"),
Nil,
TypeTree(fieldMemberType)
)
)
)
),
Apply(Select(New(Ident(anon)), nme.CONSTRUCTOR), Nil)
)
)
Where anon is a type name you've created in advance for your anonymous class, and constructor is a convenience method I use to make this kind of thing a little less hideous (you can find its definition at the end of this complete working example).
Now if we wrap this expression up in something like this, we can write the following:
scala> TypeMemberExample.builderWithType[String]
res0: TypeBuilder{type fieldType = String} = $1$$1#fb3f1f3
So it works. We've taken a c.universe.Type (which I get here from the WeakTypeTag of the type parameter on builderWithType, but it will work in exactly the same way with any old Type) and used it to define the type member of our TypeBuilder trait.
There is a simpler approach than tree writing for your use case. Indeed I use it all the time to keep trees at bay, as it can be really difficult to program with trees. I prefer to compute types and use reify to generate the trees. This makes much more robust and "hygienic" macros and less compile time errors. IMO using trees must be a last resort, only for a few cases, such as tree transforms or generic programming for a family of types such as tuples.
The tip here is to define a function taking as type parameters, the types you want to use in the reify body, with a context bound on a WeakTypeTag. Then you call this function by passing explicitly the WeakTypeTags you can build from universe Types thanks to the context WeakTypeTag method.
So in your case, that would give the following.
val fieldMemberType: Type = fieldMember.typeSignatureIn(objectType) match {
case NullaryMethodType(tpe) => tpe
case _ => doesntCompile(s"$propertyName isn't a field, it must be another thing")
}
def genRes[T: WeakTypeTag] = reify{
new TypeBuilder() {
type fieldType = T
}
}
genRes(c.WeakTypeTag(fieldMemberType))