How to disable all optimizations of PostgreSQL - postgresql

I'm studying query optimization and want to know how much each kind of optimizations help the query. Last time, I got an answer but when in my experiments, disable all optimization in the link has time complicity of O(n^1.8) enable all of them has O(n^0.5). there is not so much difference, if disable all of them, is there still other optimizations? how can I really have only one main optimizations each time?

You can't.
PostgreSQL's query planner has no "turn off optimisation" flag.
It'd be interesting to add, but would make the regression tests a lot more complex, and be of very limited utility.
To do what you want, I think you'd want to modify the query planner code, recompile, and reinstall PostgreSQL for each test. Or hack it to add a bunch of custom GUCs (system variables, like enable_seqscan) to let you turn particular optimisations on and off.
I doubt any such patch would be accepted into PostgreSQL, but it'd be worth doing as a throwaway.
The only challenge is that PostgreSQL doesn't differentiate strongly between "optimisation" and "thing we do to execute the query". Sometimes parts of the planner code expect and require that a particular optimisation has been applied in order to work correctly.

Related

Do cats and scalaz create performance overhead on application?

I know it is totally a nonsense question but due to my illiteracy on programming skill this question came to my mind.
Cats and scalaz are used so that we can code in Scala similar to Haskell/in pure functional programming way. But for achieving this we need to add those libraries additionally with our projects. Eventually for using these we need to wrap our codes with their objects and functions. It is something adding extra codes and dependencies.
I don't know whether these create larger objects in memory.
These is making me think about. So my question: will I face any performance issue like more memory consumption if I use cats/scalaz ?
Or should I avoid these if my application needs performance?
Do cats and scalaz create performance overhead on application?
Absolutely.
The same way any line of code adds performance overhead.
So, if that is your concern, then don't write any code (well, actually the world may be simpler if we would have never tried all this).
Now, dick answer outside. The proper question you should be asking is: "Does the overhead of X library is harmful to my software?"; remember this applies to any library, actually to any code you write, to any algorithm you pick, etc.
And, in order to answer that question, we need some things before.
Define the SLAs the software you are writing must hold. Without those, any performance question / observation you made is pointless. It doesn't matter if something is faster / slower if you don't know if that is meaningful for you and your clients.
Once you have SLAs you need to perform stress tests to verify if your current version of the software satisfies those. Because, if your current code is performant enough, then you should worry about other things like maintainability, testing, adding more features, etc.
PS: Remember that those SLAs should not be raw numbers but be expressed in terms of percentiles, the same goes for the results of the tests.
When you found that you are falling your SLAs then you need to do proper benchmarking and debugging to identify the bottlenecks of your project. As you saw, caring about performance must be done on each line of code, but that is a lot of work that usually doesn't produce any relevant output. Thus, instead of evaluating the performance of everything, we find the bottlenecks first, those small pieces of code that have the biggest contributions to the overall performance of your software (remember the Pareto principle).
Remember that in this step, we have to be integral, network matters too. (and you will see this last one is usually the biggest slowdown; thus, usually you would rather search for architectural solutions like using Fibers instead of Threads rather than trying to optimize small functions. Also, sometimes the easier and cheaper solution is better infrastructure).
When you find the bottleneck, then you need to formulate some alternatives, implement those and not only benchmark them but do Statistical hypothesis testing to validate if the proposed changes are worth it or not. And, of course, validate if they were enough to satisfy the SLAs.
Thus, as you can see, performance is an art and a lot of work. So, unless you are committed to doing all this then stop worrying about something you will not measure and optimize properly.
Rather, focus on increasing the maintainability of your code. This actually also helps performance, because when you find that you need to change something you would be grateful that the code is as clean as possible and that the whole architecture of the code allows for an easy change.
And, believe me when I say that, using tools like cats, cats-effect, fs2, etc will help with that regard. Also, they actually pretty optimized on their core so you should be good for a lot of use cases.
Now, the big exception is that if you know that the work you are doing will be very CPU and memory bound then yeah, you pretty much can be sure all those abstractions will be harmful. In those cases, you may even want to stay away from the JVM and rather write pretty low-level code in a language like Rust which will provide you with proper tools for that kind of problem and still be way safer than plain old C.

How to disable/enable different query optimizations in POSTGRESQL?

I'm doing some test to see the capability of Postgresql query performance. And my plan is to disable/enable different query optimizations, such as disable (automatic) index, disable re-order joins etc. is there some configuration to achieve this quickly or what part source code should I revise? thanks.
PostgreSQL provides debug parameters for exactly this.
See the enable_ params in the docs.
Please don't use them in production; it might seem like a good idea at the time, but those settings won't adapt as the data changes and grows, so what starts out as a performance win will probably become a problem later.

When are TSQL Cursors the best or only option?

I'm having this argument about using Cursors in TSQL recently...
First of all, I'm not a cheerleader in the debate. But every time someone says cursor, there's always some knucklehead (or 50) who pounce with the obligatory 'cursors are evil' mantra. I know SQL-Server was optimized for set-based operations, and maybe cursors truly ARE evil incarnate, but if I wanted to put some objective thought behind that...
Here's where my mind is going:
Is the only difference between cursors and set operations one of performance?
Edit: There's been a good case made for it not being simply a matter of performance -- such as running a single batch over-and-over for a list of id's, or alternatively, executing actual SQL text stored in a table field row-by-row.
Follow-up: do cursors always perform worse?
EDIT: #Martin shows a good case where Cursors out-perform set-based operations fairly dramatically. I suspect that this wouldn't be the kind of thing you'd do too often (before you resorted to some kind of OLAP / Data Warehouse kind of solution), but nonetheless, seems like a case where you really couldn't live without a cursor.
reference to TPC benchmarks suggesting cursors may be more competitive than folks generally believe.
reference to memory-usage optimizations for cursors since Sql-Server 2005
Are there any problems you can think of, that cursors are better suited to solve than set-based operations?
EDIT: Set-based operations literally cannot Execute stored procedures, etc. (see edit for item 1 above).
EDIT: Set-based operations are exponentially slower than row-by-row when it comes to aggregating over large data sets.
Article from MSDN explaining their perspective
of the most common problems people resort to cursors for (and some
explanation of set-based techniques that would work better.)
Microsoft says (vaguely) in the 2008 Transact SQL Reference on MSDN: "...there are times when the results are best processed one row at a time", but the don't give any examples as to what cases they're referring to.
Mostly, I'm of a mind to convert cursors to set-based operations in my old code if/as I do any significant upgrades to various applications, as long as there's something to be gained from it. (I tend toward laziness over purity a lot of the time -- i.e., if it ain't broke, don't fix it.)
To answer your question directly:
I have yet to encounter a situation where set operations could not do what might otherwise be done with cursors. However, there are situations where using cursors to break a large set problem down into more manageable chunks proves a better solution for purposes of code maintainability, logging, transaction control, and the like. But I doubt there are any hard-and-fast rules to tell you what types of requirements would lead to one solution or the other -- individual databases and needs are simply far too variant.
That said, I fully concur with your "if it ain't broke, don't fix it" approach. There is little to be gained by refactoring procedural code to set operations for a procedure that is working just fine. However, it is a good rule of thumb to seek first for a set-based solution and only drop into procedural code when you must. Gut feel? If you're using cursors more than 20% of the time, you're doing something wrong.
And for what I really want to say:
When I interview programmers, I always throw them a couple of moderately complex SQL questions and ask them to explain how they'd solve them. These are problems that I know can be solved with set operations, and I'm specifically looking for candidates who are able to solve them without procedural approaches (i.e., cursors).
This is not because I believe there is anything inherently good or more performant in either approach -- different situations yield different results. Rather it's because, in my experience, programmers either get the concept of set-based operations or they do not. If they do not, they will spend too much time developing complex procedural solutions for problems that can be solved far more quickly and simply with set-based operations.
Conversely, a programmer who gets set-based operations almost never has problems implementing a procedural solution when, indeed, it's absolutely necessary.
Running Totals is the classic case where as the number of rows gets larger cursors can out perform set based operations as despite the higher fixed cost of the cursor the work required grows linearly rather than exponentially as with the set based "triangular join" approach.
Itzik Ben Gan does some comparisons here.
Denali has more complete support for the OVER clause however that should make this use redundant.
Since I've seen people manage to re-implement cursors (in all there varied forms) using other TSQL constructs (usually involving at least one while loop), there's nothing that cursors can achieve that can't be done using other constructs.
That's not to say that the re-implementations aren't equally as inefficient as the cursors that were avoided by not including the word "cursor" in that solution. Some people seem to purely hate the word, not the mechanics.
One place I've successfully argued to keep cursors was for a data transfer/transform between two different databases (we were dealing with clients here). Whilst we could have implemented this transfer in a set based manner (indeed, we previously had), there was problematic data that could cause issues for a few clients. In a set based solution, we had either to:
Continue the transfer, excluding failed client data at each table, leaving those clients partially transferred, or,
abort the entire batch
Whereas, by making the unit of transfer the individual client (using a cursor to select each client), we could make each client's transfer between the systems either work fully or be entirely rolled back (i.e. place each transfer in its own transaction)
I can't think of any situations where I've wanted to use a cursor below the "top level" of such transfers though (e.g. selecting which client to transfer next)
Often when you build dynamic sql, you have to use cursors. Imagine a script that search through all tabels in the database for same value in different fields. Best solution will be a cursor. Question where the problem was raised is here How to use EXEC or sp_executeSQL without looping in this case? I will be really impressed if anyone can solve that better without a cursor.

Analyse Database Table and Usage

I just got into a new company and my task is to optimize the Database performance. One possible (and suggested) way would be to use multiple servers instead of one. As there are many possible ways to do that, i need to analyse the DB first. Is there a tool with which i can measure how many Inserts/Updates and Deletes are performed for each table?
I agree with Surfer513 that the DMV is going to be much better than CDC. Adding CDC is fairly complex and will add a load to the system. (See my article here for statistics.)
I suggest first setting up a SQL Server Trace to see which commands are long-running.
If your system makes heavy use of stored procedures (which hopefully it does), also check out sys.dm_exec_procedure_stats. That will help you to concentrate on the procedures/tables/views that are being used most-often. Look at execution_count and total_worker_time.
The point is that you want to determine which parts of your system are slow (using Trace) so that you know where to spend your time.
One way would be to utilize Change Data Capture (CDC) or Change Tracking. Not sure how in depth you are looking for with this, but there are other simpler ways to get a rough estimate (doesn't look like you want exacts, just ballpark figures..?).
Assuming that there are indexes on your tables, you can query sys.dm_db_index_operational_stats to get data on inserts/updates/deletes that affect the indexes. Again, this is a rough estimate but it'll give you a decent idea.

Why “Set based approaches” are better than the “Procedural approaches”?

I am very eager to know the real cause though earned some knowledge from googling.
Thanks in adavnce
Because SQL is a really poor language for writing procedural code, and because the SQL engine, storage, and optimizer are designed to make it efficient to assemble and join sets of records.
(Note that this isn't just applicable to SQL Server, but I'll leave your tags as they are)
Because, in general, the hundreds of man-years of development time that have gone into the database engine and optimizer, and the fact that it has access to real-time statistics about the data, have resulted in it being better than the user in working out the best way to process the data, for a given request.
Therefore by saying what we want to achieve (with a set-based approach), and letting it decide how to do it, we generally achieve better results than by spelling out exactly how to provess the data, line by line.
For example, suppose we have a simple inner join from table A to table B. At design time, we generally don't know 'which way round' will be most efficient to process: keep a list of all the values on the A side, and go through B matching them, or vice versa. But the query optimizer will know at runtime both the numbers of rows in the tables, and also the most recent statistics may provide more information about the values themselves. So this decision is obviously better made at runtime, by the optimizer.
Finally, note that I have put a number of 'generally's in this post - there will always be times when we know better than the optimizer will, and for such times we can provide hints (NOLOCK etc).
Set based approaches are declarative, so you don't describe the way the work will be done, only what you want the result to look like. The server can decide between several strategies how to complay with your request, and hopefully choose one that is efficient.
If you write procedural code, that code will at best be less then optimal in some situation.
Because using a set-based approach to SQL development conforms to the design of the data model. SQL is a very set-based language, used to build sets, subsets, unions, etc, from data. Keeping that in mind while developing in TSQL will generally lead to more natural algorithms. TSQL makes many procedural commands available that don't exist in plain SQL, but don't let that switch you to a procedural methodology.
This makes me think of one of my favorite quotes from Rob Pike in Notes on Programming C:
Data dominates. If you have chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming.
SQL databases and the way we query them are largely set-based. Thus, so should our algorithms be.
From an even more tangible standpoint, SQL servers are optimized with set-based approaches in mind. Indexing, storage systems, query optimizers, and other optimizations made by various SQL database implmentations will do a much better job if you simply tell them the data you need, through a set-based approach, rather than dictating how you want to get it procedurally. Let the SQL engine worry about the best way to get you the data, you just worry about telling it what data you want.
As each one has explained, let the SQL engine help you, believe, it is very smart.
If you do not use to write set based solution and use to develop procedural code, you will have to spend some time until write well formed set based solutions. This is a barrier for most people. A tip if you wish to start coding set base solutions is, stop thinking what you can do with rows, and start thinking what you can do with collumns, and do practice functional languages.