Analyse Database Table and Usage - sql-server-2008-r2

I just got into a new company and my task is to optimize the Database performance. One possible (and suggested) way would be to use multiple servers instead of one. As there are many possible ways to do that, i need to analyse the DB first. Is there a tool with which i can measure how many Inserts/Updates and Deletes are performed for each table?

I agree with Surfer513 that the DMV is going to be much better than CDC. Adding CDC is fairly complex and will add a load to the system. (See my article here for statistics.)
I suggest first setting up a SQL Server Trace to see which commands are long-running.
If your system makes heavy use of stored procedures (which hopefully it does), also check out sys.dm_exec_procedure_stats. That will help you to concentrate on the procedures/tables/views that are being used most-often. Look at execution_count and total_worker_time.
The point is that you want to determine which parts of your system are slow (using Trace) so that you know where to spend your time.

One way would be to utilize Change Data Capture (CDC) or Change Tracking. Not sure how in depth you are looking for with this, but there are other simpler ways to get a rough estimate (doesn't look like you want exacts, just ballpark figures..?).
Assuming that there are indexes on your tables, you can query sys.dm_db_index_operational_stats to get data on inserts/updates/deletes that affect the indexes. Again, this is a rough estimate but it'll give you a decent idea.

Related

When's the time to create dedicated collections in MongoDB to avoid difficult queries?

I am asking a question that I assume does not have a simple black and white question but the principal of which I'm asking is clear.
Sample situation:
Lets say I have a collection of 1 million books, and I consistently want to always pull the top 100 rated.
Let's assume that I need to perform an aggregate function every time I perform this query which makes it a little expensive.
It is reasonable, that instead of running the query for every request (100-1000 a second), I would create a dedicated collection that only stores the top 100 books that gets updated every minute or so, thus instead of running a difficult query a 100 times every second, I only run it once a minute, and instead pull from a small collection of books that only holds the 100 books and that requires no query (just get everything).
That is the principal I am questioning.
Should I create a dedicated collection for EVERY query that is often
used?
Should I do it only for complicated ones?
How do I gauge which is complicated enough and which is simple enough
to leave as is?
Is there any guidelines for best practice in those types of
situations?
Is there a point where if a query runs so often and the data doesn't
change very often that I should keep the data in the server's memory
for direct access? Even if it's a lot of data? How much is too much?
Lastly,
Is there a way in MongoDB to cache results?
If so, how can I tell it to fetch the cached result, and when to regenerate the cache?
Thank you all.
Before getting to collection specifics, one does have to differentiate between "real-time data" vis-a-vis data which does not require immediate and real-time presenting of information. The rules for "real-time" systems are obviously much different.
Now to your example starting from the end. The cache of query results. The answer is not only for MongoDB. Data architects often use Redis, or memcached (or other cache systems) to hold all types of information. This though, obviously, is a function of how much memory is available to your system and the DB. You do not want to cripple the DB by giving your cache too much of available memory, and you do not want your cache to be useless by giving it too little.
In the book case, of 100 top ones, since it is certainly not a real time endeavor, it would make sense to cache the query and feed that cache out to requests. You could update the cache based upon a cron job or based upon an update flag (which you create to inform your program that the 100 have been updated) and then the system will run an $aggregate in the background.
Now to the first few points:
Should I create a dedicated collection for EVERY query that is often used?
Yes and no. It depends on the amount of data which has to be searched to $aggregate your response. And again, it also depends upon your memory limitations and btw let me add the whole server setup in terms of speed, cores and memory. MHO - cache is much better, as it avoids reading from the data all the time.
Should I do it only for complicated ones?
How do I gauge which is complicated enough and which is simple enough to leave as is?
I dont think anyone can really black and white answer to that question for your system. Is a complicated query just an $aggregate? Or is it $unwind and then a whole slew of $group etc. options following? this is really up to the dataset and how much information must actually be read and sifted and manipulated. It will effect your IO and, yes, again, the memory.
Is there a point where if a query runs so often and the data doesn't change very often that I should keep the data in the server's memory for direct access? Even if it's a lot of data? How much is too much?
See answers above this is directly connected to your other questions.
Finally:
Is there any guidelines for best practice in those types of situations?
The best you can do here is to time the procedures in your code, monitor memory usage and limits, look at the IO, study actual reads and writes on the collections.
Hope this helps.
Use a cache to store objects. For example in Redis use Redis Lists
Redis Lists are simply lists of strings, sorted by insertion order
Then set expiry to either a timeout or a specific time
Now whenever you have a miss in Redis, run the query in MongoDB and re-populate your cache. Also since cache resids in memory therefore your fetches will be extremely fast as compared to dedicated collections in MongoDB.
In addition to that, you don't have to keep have a dedicated machine, just deploy it within your application machine.

Is it practical to use one table for reading purpose only in a relational database?

I know this question would not be ideal in a real database world, however, I am building a web REST api to server a result that potentially need to join almost every table(i use normalization for sure).
So is it OK to do have one single table to hold the meta data used for reading API, but the table get updated as well when data updated in other tables? I am using PostgreSQL by the way.
This is not very clear so I will state my understanding of the question and give you what I see are the tradeoffs.
First.... It sounds to me like you want to effectively materialize a metadata table and have it live-updated when other tables update. This is not really what the MATERIALIED VIEW support in PostgreSQL is for.
You can use a trigger to update the data whenever something changes. Because of the way PostgreSQL handles things, this leads to more disk and CPU activity, but will probably add more on the latter than the former. So if you hare heavily CPU-bound that will pose more problems than if you are I/O bound.
Using triggers in this way adds a fair bit of complexity to your database and may reduce write scaling a bit but if the data is seldom written but read frequently it may be a clear win.
So in answer to your question, yes it is practical in at least some cases. Whether it is practical in your case, that will be for you to decide.

Storing and managing Forex trading tick data

I'm building a data visualization system for Forex trading and I'm exploring ways of storing the historical Forex trading tick data that I have.
The data are in the form of currency pair (e.g. USD/CAD) chronological ticks of Ask and Bid prices. At the end of the day I need my data to be indexed in Elasticsearch and what I searching for is the best way to get them there.
I found a couple of approaches online; they start out simple but then get complicated. I'm wondering if adding that extra complexity is worth it. Some of my options are:
Storing tick data on PostgreSQL and then via a plugin sync them to Elasticsearch (here)
Storing tick data on PostgreSQL, push them to Logstash and then to Elasticsearch
Finally, storing tick data on PostgreSQL, push them to Redis, then to Logstash, and then to Elasticsearch
My intuition says that solution No 2 would be the ideal one, but what is considered best practice?
It's a good idea to store your data in a long-term storage DB, such as PostgreSQL or similar. That way you can decide at any time whether you need to change your mappings, add fields, remove fields, change their types, or what have you, and then you can easily rebuild your ES index/indices without too much trouble from your primary source of truth (i.e. PostgreSQL) and you always have clean data in ES.
I don't know ZomboDB (solution 1) so I can't really speak for it, all I know is that I'm generally not too fond of tying two different technologies together, it makes it hard to upgrade any of them in case you need/must/want to apply patches or benefit from new features in either of them.
Unless you have big and costly transformations to do on your source data, I feel that solution 3 doesn't bring much, i.e. the additional step of storing data in an intermediary Redis, doesn't bring much in my opinion (your mileage may vary here). It's a good idea to use a temporary store, such as Redis or Kafka, when you may lose data along the pipeline, but in this case, since you have your data in PostgreSQL, you don't really run the risk of losing anything. If at all, you can relaunch your pipeline and rebuild a few days of data.
That leaves solution 2, which would be fine given the information at hand. Using the Logstash JDBC input, you can easily retrieve the latest changes and forward them to ES every x minutes.
Eric from ZomboDB here. I wanted to try and answer your question as it relates to ZDB.
ZomboDB is really designed for full-text searching within Postgres. It's important to note that it's not a tool to synchronize your PG data to Elasticsearch. It's a fully-functional Postgres index type (akin to the built-in types like btree, gin, and gist) that happens to be backed by Elasticsearch. The fact that ZomboDB uses Elasticsearch is really an implementation detail.
While ZDB does provide a number of UDFs that expose access to ES' aggregate facilities, again, it's really designed for text searching.
So if your data is really just pairs of numbers, you're probably better off using ES directly -- especially if you're loading in one batch per day. There's no doubt that ZDB could provide superior aggregate performance compared to standard Postgres "GROUP BY" queries (because it passes it through to Elasticsearch), but you're paying a heavy operational penalty for a limited use-case.
If, on the other hand, your ask/bid data comes with a lot of related metadata, and:
You need PG to be your source of truth,
You need to text-search that metadata (with or without aggregation support), and
You don't want to learn ES and introduce another database system to your application, then...
... ZomboDB could be right for you.
I suspect Stack Overflow isn't the place to get into this, so feel free to contact me via the ways ZDB's github page recommends.

NoSQL & AdHoc Queries - Millions of Rows

I currently run a MySQL-powered website where users promote advertisements and gain revenue every time someone completes one. We log every time someone views an ad ("impression"), every time a user clicks an add ("click"), and every time someone completes an ad ("lead").
Since we get so much traffic, we have millions of records in each of these respective tables. We then have to query these tables to let users see how much they have earned, so we end up performing multiple queries on tables with millions and millions of rows multiple times in one request, hundreds of times concurrently.
We're looking to move away from MySQL and to a key-value store or something along those lines. We need something that will let us store all these millions of rows, query them in milliseconds, and MOST IMPORTANTLY, use adhoc queries where we can query any single column, so we could do things like:
FROM leads WHERE country = 'US' AND user_id = 501 (the NoSQL equivalent, obviously)
FROM clicks WHERE ad_id = 1952 AND user_id = 200 AND country = 'GB'
etc.
Does anyone have any good suggestions? I was considering MongoDB or CouchDB but I'm not sure if they can handle querying millions of records multiple times a second and the type of adhoc queries we need.
Thanks!
With those requirements, you are probably better off sticking with SQL and setting up replication/clustering if you are running into load issues. You can set up indexing on a document database so that those queries are possible, but you don't really gain anything over your current system.
NoSQL systems generally improve performance by leaving out some of the more complex features of relational systems. This means that they will only help if your scenario doesn't require those features. Running ad hoc queries on tabular data is exactly what SQL was designed for.
CouchDB's map/reduce is incremental which means it only processes a document once and stores the results.
Let's assume, for a moment, that CouchDB is the slowest database in the world. Your first query with millions of rows takes, maybe, 20 hours. That sounds terrible. However, your second query, your third query, your fourth query, and your hundredth query will take 50 milliseconds, perhaps 100 including HTTP and network latency.
You could say CouchDB fails the benchmarks but gets honors in the school of hard knocks.
I would not worry about performance, but rather if CouchDB can satisfy your ad-hoc query requirements. CouchDB wants to know what queries will occur, so it can do the hard work up-front before the query arrives. When the query does arrive, the answer is already prepared and out it goes!
All of your examples are possible with CouchDB. A so-called merge-join (lots of equality conditions) is no problem. However CouchDB cannot support multiple inequality queries simultaneously. You cannot ask CouchDB, in a single query, for users between age 18-40 who also clicked fewer than 10 times.
The nice thing about CouchDB's HTTP and Javascript interface is, it's easy to do a quick feasibility study. I suggest you try it out!
Most people would probably recommend MongoDB for a tracking/analytic system like this, for good reasons. You should read the „MongoDB for Real-Time Analytics” chapter from the „MongoDB Definitive Guide” book. Depending on the size of your data and scaling needs, you could get all the performance, schema-free storage and ad-hoc querying features. You will need to decide for yourself if issues with durability and unpredictability of the system are risky for you or not.
For a simpler tracking system, Redis would be a very good choice, offering rich functionality, blazing speed and real durability. To get a feel how such a system would be implemented in Redis, see this gist. The downside is, that you'd need to define all the „indices” by yourself, not gain them for „free”, as is the case with MongoDB. Nevertheless, there's no free lunch, and MongoDB indices are definitely not a free lunch.
I think you should have a look into how ElasticSearch would enable you:
Blazing speed
Schema-free storage
Sharding and distributed architecture
Powerful analytic primitives in the form of facets
Easy implementation of „sliding window”-type of data storage with index aliases
It is in heart a „fulltext search engine”, but don't get yourself confused by that. Read the „Data Visualization with ElasticSearch and Protovis“ article for real world use case of ElasticSearch as a data mining engine.
Have a look on these slides for real world use case for „sliding window” scenario.
There are many client libraries for ElasticSearch available, such as Tire for Ruby, so it's easy to get off the ground with a prototype quickly.
For the record (with all due respect to #jhs :), based on my experience, I cannot imagine an implementation where Couchdb is a feasible and useful option. It would be an awesome backup storage for your data, though.
If your working set can fit in the memory, and you index the right fields in the document, you'd be all set. Your ask is not something very typical and I am sure with proper hardware, right collection design (denormalize!) and indexing you should be good to go. Read up on Mongo querying, and use explain() to test the queries. Stay away from IN and NOT IN clauses that'd be my suggestion.
It really depends on your data sets. The number one rule to NoSQL design is to define your query scenarios first. Once you really understand how you want to query the data then you can look into the various NoSQL solutions out there. The default unit of distribution is key. Therefore you need to remember that you need to be able to split your data between your node machines effectively otherwise you will end up with a horizontally scalable system with all the work still being done on one node (albeit better queries depending on the case).
You also need to think back to CAP theorem, most NoSQL databases are eventually consistent (CP or AP) while traditional Relational DBMS are CA. This will impact the way you handle data and creation of certain things, for example key generation can be come trickery.
Also remember than in some systems such as HBase there is no indexing concept. All your indexes will need to be built by your application logic and any updates and deletes will need to be managed as such. With Mongo you can actually create indexes on fields and query them relatively quickly, there is also the possibility to integrate Solr with Mongo. You don’t just need to query by ID in Mongo like you do in HBase which is a column family (aka Google BigTable style database) where you essentially have nested key-value pairs.
So once again it comes to your data, what you want to store, how you plan to store it, and most importantly how you want to access it. The Lily project looks very promising. The work I am involved with we take a large amount of data from the web and we store it, analyse it, strip it down, parse it, analyse it, stream it, update it etc etc. We dont just use one system but many which are best suited to the job at hand. For this process we use different systems at different stages as it gives us fast access where we need it, provides the ability to stream and analyse data in real-time and importantly, keep track of everything as we go (as data loss in a prod system is a big deal) . I am using Hadoop, HBase, Hive, MongoDB, Solr, MySQL and even good old text files. Remember that to productionize a system using these technogies is a bit harder than installing MySQL on a server, some releases are not as stable and you really need to do your testing first. At the end of the day it really depends on the level of business resistance and the mission-critical nature of your system.
Another path that no one thus far has mentioned is NewSQL - i.e. Horizontally scalable RDBMSs... There are a few out there like MySQL cluster (i think) and VoltDB which may suit your cause.
Again it comes to understanding your data and the access patterns, NoSQL systems are also Non-Rel i.e. non-relational and are there for better suit to non-relational data sets. If your data is inherently relational and you need some SQL query features that really need to do things like Cartesian products (aka joins) then you may well be better of sticking with Oracle and investing some time in indexing, sharding and performance tuning.
My advice would be to actually play around with a few different systems. However for your use case I think a Column Family database may be the best solution, I think there are a few places which have implemented similar solutions to very similar problems (I think the NYTimes is using HBase to monitor user page clicks). Another great example is Facebook and like, they are using HBase for this. There is a really good article here which may help you along your way and further explain some points above. http://highscalability.com/blog/2011/3/22/facebooks-new-realtime-analytics-system-hbase-to-process-20.html
Final point would be that NoSQL systems are not the be all and end all. Putting your data into a NoSQL database does not mean its going to perform any better than MySQL, Oracle or even text files... For example see this blog post: http://mysqldba.blogspot.com/2010/03/cassandra-is-my-nosql-solution-but.html
I'd have a look at;
MongoDB - Document - CP
CouchDB - Document - AP
Redis - In memory key-value (not column family) - CP
Cassandra - Column Family - Available & Partition Tolerant (AP)
HBase - Column Family - Consistent & Partition Tolerant (CP)
Hadoop/Hive - Also have a look at Hadoop streaming...
Hypertable - Another CF CP DB.
VoltDB - A really good looking product, a relation database that is distributed and might work for your case (may be an easier move). They also seem to provide enterprise support which may be more suited for a prod env (i.e. give business users a sense of security).
Any way thats my 2c. Playing around with the systems is really the only way your going to find out what really works for your case.

Why “Set based approaches” are better than the “Procedural approaches”?

I am very eager to know the real cause though earned some knowledge from googling.
Thanks in adavnce
Because SQL is a really poor language for writing procedural code, and because the SQL engine, storage, and optimizer are designed to make it efficient to assemble and join sets of records.
(Note that this isn't just applicable to SQL Server, but I'll leave your tags as they are)
Because, in general, the hundreds of man-years of development time that have gone into the database engine and optimizer, and the fact that it has access to real-time statistics about the data, have resulted in it being better than the user in working out the best way to process the data, for a given request.
Therefore by saying what we want to achieve (with a set-based approach), and letting it decide how to do it, we generally achieve better results than by spelling out exactly how to provess the data, line by line.
For example, suppose we have a simple inner join from table A to table B. At design time, we generally don't know 'which way round' will be most efficient to process: keep a list of all the values on the A side, and go through B matching them, or vice versa. But the query optimizer will know at runtime both the numbers of rows in the tables, and also the most recent statistics may provide more information about the values themselves. So this decision is obviously better made at runtime, by the optimizer.
Finally, note that I have put a number of 'generally's in this post - there will always be times when we know better than the optimizer will, and for such times we can provide hints (NOLOCK etc).
Set based approaches are declarative, so you don't describe the way the work will be done, only what you want the result to look like. The server can decide between several strategies how to complay with your request, and hopefully choose one that is efficient.
If you write procedural code, that code will at best be less then optimal in some situation.
Because using a set-based approach to SQL development conforms to the design of the data model. SQL is a very set-based language, used to build sets, subsets, unions, etc, from data. Keeping that in mind while developing in TSQL will generally lead to more natural algorithms. TSQL makes many procedural commands available that don't exist in plain SQL, but don't let that switch you to a procedural methodology.
This makes me think of one of my favorite quotes from Rob Pike in Notes on Programming C:
Data dominates. If you have chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming.
SQL databases and the way we query them are largely set-based. Thus, so should our algorithms be.
From an even more tangible standpoint, SQL servers are optimized with set-based approaches in mind. Indexing, storage systems, query optimizers, and other optimizations made by various SQL database implmentations will do a much better job if you simply tell them the data you need, through a set-based approach, rather than dictating how you want to get it procedurally. Let the SQL engine worry about the best way to get you the data, you just worry about telling it what data you want.
As each one has explained, let the SQL engine help you, believe, it is very smart.
If you do not use to write set based solution and use to develop procedural code, you will have to spend some time until write well formed set based solutions. This is a barrier for most people. A tip if you wish to start coding set base solutions is, stop thinking what you can do with rows, and start thinking what you can do with collumns, and do practice functional languages.