Input signal for Simulink - matlab

I want to use the following signal (red) in Simulink as input.
All I have is this picture. Any advice on the simplest way to implement this signal?

Your question has two parts: bringing the data to work space of Matlab and feeding the data to Simulink.
For the first part I think the simplest thing is to put about 30 points on the figure and write their estimated (x,y) values in vectors X and Y. it should not be hard because the first part of it is periodic.
Then use plot(X,Y) to plot this vector in Matlab and update your estimated values till you are satisfied that your plot is similar to the figure.
For the second part you can create a structure where time is the same as your X axis and Y as the values:
input.time = X;
input.signals.values = Y;
where X and Y should have the same length.
you can find good examples of how to import signals from work space to Simulink at this page: https://www.mathworks.com/help/simulink/slref/fromworkspace.html

Related

MATLAB: polyval function for N greater than 1

I am trying trying to graph the polynomial fit of a 2D dataset in Matlab.
This is what I tried:
rawTable = readtable('Test_data.xlsx','Sheet','Sheet1');
x = rawTable.A;
y = rawTable.B;
figure(1)
scatter(x,y)
c = polyfit(x,y,2);
y_fitted = polyval(c,x);
hold on
plot(x,y_fitted,'r','LineWidth',2)
rawTable.A and rawTable.A are randomly generated numbers. (i.e. the x dataset cannot be represented in the following form : x=0:0.1:100)
The result:
second-order polynomial
But the result I expect looks like this (generated in Excel):
enter image description here
How can I graph the second-order polynomial fit in MATLAB?
I sense some confusion regarding what the output of each of those Matlab function mean. So I'll clarify. And I think we need some details as well. So expect some verbosity. A quick answer, however, is available at the end.
c = polyfit(x,y,2) gives the coefficient vectors of the polynomial fit. You can get the fit information such as error estimate following the documentation.
Name this polynomial as P. P in Matlab is actually the function P=#(x)c(1)*x.^2+c(2)*x+c(3).
Suppose you have a single point X, then polyval(c,X) outputs the value of P(X). And if x is a vector, polyval(c,x) is a vector corresponding to [P(x(1)), P(x(2)),...].
Now that does not represent what the fit is. Just as a quick hack to see something visually, you can try plot(sort(x),polyval(c,sort(x)),'r','LineWidth',2), ie. you can first sort your data and try plotting on those x-values.
However, it is only a hack because a) your data set may be so irregularly spaced that the spline doesn't represent function or b) evaluating on the whole of your data set is unnecessary and inefficient.
The robust and 'standard' way to plot a 2D function of known analytical form in Matlab is as follows:
Define some evenly-spaced x-values over the interval you want to plot the function. For example, x=1:0.1:10. For example, x=linspace(0,1,100).
Evaluate the function on these x-values
Put the above two components into plot(). plot() can either plot the function as sampled points, or connect the points with automatic spline, which is the default.
(For step 1, quadrature is ambiguous but specific enough of a term to describe this process if you wish to communicate with a single word.)
So, instead of using the x in your original data set, you should do something like:
t=linspace(min(x),max(x),100);
plot(t,polyval(c,t),'r','LineWidth',2)

Matlab : Intersect point of curves

Say for example I have data which forms the parabolic curve y=x^2, and I want to read off the x value for a given y value. How do I go about doing this in MATLAB?
If it were a straight line, I could just use the equation of the line of best fit to calculate easily, however I can't do this with a curved line. If I can't find a solution, I'll solve for roots
Thanks in advance.
If all data are arrays (not analytical expressions), I usually do that finding minimal absolute error
x=some_array;
[~,ind]=min(abs(x.^2-y0))
Here y0 is a given y value
If your data are represented by a function, you can use fsolve:
function y = myfun(x)
y=x^2-y0
[x,fval] = fsolve(#myfun,x0,options)
For symbolic computations, one can use solve
syms x
solve(x^2 - y0)
Assuming your two curves are just two vectors of data, I would suggest you use Fast and Robust Curve Intersections from the File Exchange. See also these two similar questions: how to find intersection points when lines are created from an array and Finding where plots may cross with octave / matlab.

matlab: cdfplot of relative error

The figure shown above is the plot of cumulative distribution function (cdf) plot for relative error (attached together the code used to generate the plot). The relative error is defined as abs(measured-predicted)/(measured). May I know the possible error/interpretation as the plot is supposed to be a smooth curve.
X = load('measured.txt');
Xhat = load('predicted.txt');
idx = find(X>0);
x = X(idx);
xhat = Xhat(idx);
relativeError = abs(x-xhat)./(x);
cdfplot(relativeError);
The input data file is a 4x4 matrix with zeros on the diagonal and some unmeasured entries (represent with 0). Appreciate for your kind help. Thanks!
The plot should be a discontinuous one because you are using discrete data. You are not plotting an analytic function which has an explicit (or implicit) function that maps, say, x to y. Instead, all you have is at most 16 points that relates x and y.
The CDF only "grows" when new samples are counted; otherwise its value remains steady, just because there isn't any satisfying sample that could increase the "frequency".
You can check the example in Mathworks' `cdfplot1 documentation to understand the concept of "empirical cdf". Again, only when you observe a sample can you increase the cdf.
If you really want to "get" a smooth curve, either 1) add more points so that the discontinuous line looks smoother, or 2) find any statistical model of whatever you are working on, and plot the analytic function instead.

Interpolating irregularly spaced 3D matrix in matlab

I have a time series of temperature profiles that I want to interpolate, I want to ask how to do this if my data is irregularly spaced.
Here are the specifics of the matrix:
The temperature is 30x365
The time is 1x365
Depth is 30x1
Both time and depth are irregularly spaced. I want to ask how I can interpolate them into a regular grid?
I have looked at interp2 and TriScatteredInterp in Matlab, however the problem are the following:
interp2 works only if data is in a regular grid.
TriscatteredInterp works only if the vectors are column vectors. Although time and depth are both column vectors, temperature is not.
Thanks.
Function Interp2 does not require for a regularly spaced measurement grid at all, it only requires a monotonic one. That is, sampling positions stored in vectors depths and times must increase (or decrease) and that's all.
Assuming this is indeed is the situation* and that you want to interpolate at regular positions** stored in vectors rdepths and rtimes, you can do:
[JT, JD] = meshgrid(times, depths); %% The irregular measurement grid
[RT, RD] = meshgrid(rtimes, rdepths); %% The regular interpolation grid
TemperaturesOnRegularGrid = interp2(JT, JD, TemperaturesOnIrregularGrid, RT, RD);
* : If not, you can sort on rows and columns to come back to a monotonic grid.
**: In fact Interp2 has no restriction for output grid (it can be irregular or even non-monotonic).
I would use your data to fit to a spline or polynomial and then re-sample at regular intervals. I would highly recommend the polyfitn function. Actually, anything by this John D'Errico guy is incredible. Aside from that, I have used this function in the past when I had data on a irregularly spaced 3D problem and it worked reasonably well. If your data set has good support, which I suspect it does, this will be a piece of cake. Enjoy! Hope this helps!
Try the GridFit tool on MATLAB central by John D'Errico. To use it, pass in your 2 independent data vectors (time & temperature), the dependent data matrix (depth) along with the regularly spaced X & Y data points to use. By default the tool also does smoothing for overlapping (or nearly) data points. If this is not desired, you can override this (and other options) through a wide range of configuration options. Example code:
%Establish regularly spaced points
num_points = 20;
time_pts = linspace(min(time),max(time),num_points);
depth_pts = linspace(min(depth),max(depth),num_points);
%Run interpolation (with smoothing)
Pest = gridfit(depth, time, temp, time_pts, depth_pts);

matlab interpolation

Starting from the plot of one curve, it is possible to obtain the parametric equation of that curve?
In particular, say x={1 2 3 4 5 6....} the x axis, and y = {a b c d e f....} the corresponding y axis. I have the plot(x,y).
Now, how i can obtain the equation that describe the plotted curve? it is possible to display the parametric equation starting from the spline interpolation?
Thank you
If you want to display a polynomial fit function alongside your graph, the following example should help:
x=-3:.1:3;
y=4*x.^3-5*x.^2-7.*x+2+10*rand(1,61);
p=polyfit(x,y,3); %# third order polynomial fit, p=[a,b,c,d] of ax^3+bx^2+cx+d
yfit=polyval(p,x); %# evaluate the curve fit over x
plot(x,y,'.')
hold on
plot(x,yfit,'-g')
equation=sprintf('y=%2.2gx^3+%2.2gx^2+%2.2gx+%2.2g',p); %# format string for equation
equation=strrep(equation,'+-','-'); %# replace any redundant signs
text(-1,-80,equation) %# place equation string on graph
legend('Data','Fit','Location','northwest')
Last year, I wrote up a set of three blogs for Loren, on the topic of modeling/interpolationg a curve. They may cover some of your questions, although I never did find the time to add another 3 blogs to finish the topic to my satisfaction. Perhaps one day I will get that done.
The problem is to recognize there are infinitely many curves that will interpolate a set of data points. A spline is a nice choice, because it can be made well behaved. However, that spline has no simple "equation" to write down. Instead, it has many polynomial segments, pieced together to be well behaved.
You're asking for the function/mapping between two data sets. Knowing the physics involved, the function can be derived by modeling the system. Write down the differential equations and solve it.
Left alone with just two data series, an input and an output with a 'black box' in between you may approximate the series with an arbitrary function. You may start with a polynomial function
y = a*x^2 + b*x + c
Given your input vector x and your output vector y, parameters a,b,c must be determined applying a fitness function.
There is an example of Polynomial Curve Fitting in the MathWorks documentation.
Curve Fitting Tool provides a flexible graphical user interfacewhere you can interactively fit curves and surfaces to data and viewplots. You can:
Create, plot, and compare multiple fits
Use linear or nonlinear regression, interpolation,local smoothing regression, or custom equations
View goodness-of-fit statistics, display confidenceintervals and residuals, remove outliers and assess fits with validationdata
Automatically generate code for fitting and plottingsurfaces, or export fits to workspace for further analysis