matlab interpolation - matlab

Starting from the plot of one curve, it is possible to obtain the parametric equation of that curve?
In particular, say x={1 2 3 4 5 6....} the x axis, and y = {a b c d e f....} the corresponding y axis. I have the plot(x,y).
Now, how i can obtain the equation that describe the plotted curve? it is possible to display the parametric equation starting from the spline interpolation?
Thank you

If you want to display a polynomial fit function alongside your graph, the following example should help:
x=-3:.1:3;
y=4*x.^3-5*x.^2-7.*x+2+10*rand(1,61);
p=polyfit(x,y,3); %# third order polynomial fit, p=[a,b,c,d] of ax^3+bx^2+cx+d
yfit=polyval(p,x); %# evaluate the curve fit over x
plot(x,y,'.')
hold on
plot(x,yfit,'-g')
equation=sprintf('y=%2.2gx^3+%2.2gx^2+%2.2gx+%2.2g',p); %# format string for equation
equation=strrep(equation,'+-','-'); %# replace any redundant signs
text(-1,-80,equation) %# place equation string on graph
legend('Data','Fit','Location','northwest')

Last year, I wrote up a set of three blogs for Loren, on the topic of modeling/interpolationg a curve. They may cover some of your questions, although I never did find the time to add another 3 blogs to finish the topic to my satisfaction. Perhaps one day I will get that done.
The problem is to recognize there are infinitely many curves that will interpolate a set of data points. A spline is a nice choice, because it can be made well behaved. However, that spline has no simple "equation" to write down. Instead, it has many polynomial segments, pieced together to be well behaved.

You're asking for the function/mapping between two data sets. Knowing the physics involved, the function can be derived by modeling the system. Write down the differential equations and solve it.
Left alone with just two data series, an input and an output with a 'black box' in between you may approximate the series with an arbitrary function. You may start with a polynomial function
y = a*x^2 + b*x + c
Given your input vector x and your output vector y, parameters a,b,c must be determined applying a fitness function.
There is an example of Polynomial Curve Fitting in the MathWorks documentation.

Curve Fitting Tool provides a flexible graphical user interfacewhere you can interactively fit curves and surfaces to data and viewplots. You can:
Create, plot, and compare multiple fits
Use linear or nonlinear regression, interpolation,local smoothing regression, or custom equations
View goodness-of-fit statistics, display confidenceintervals and residuals, remove outliers and assess fits with validationdata
Automatically generate code for fitting and plottingsurfaces, or export fits to workspace for further analysis

Related

MATLAB: polyval function for N greater than 1

I am trying trying to graph the polynomial fit of a 2D dataset in Matlab.
This is what I tried:
rawTable = readtable('Test_data.xlsx','Sheet','Sheet1');
x = rawTable.A;
y = rawTable.B;
figure(1)
scatter(x,y)
c = polyfit(x,y,2);
y_fitted = polyval(c,x);
hold on
plot(x,y_fitted,'r','LineWidth',2)
rawTable.A and rawTable.A are randomly generated numbers. (i.e. the x dataset cannot be represented in the following form : x=0:0.1:100)
The result:
second-order polynomial
But the result I expect looks like this (generated in Excel):
enter image description here
How can I graph the second-order polynomial fit in MATLAB?
I sense some confusion regarding what the output of each of those Matlab function mean. So I'll clarify. And I think we need some details as well. So expect some verbosity. A quick answer, however, is available at the end.
c = polyfit(x,y,2) gives the coefficient vectors of the polynomial fit. You can get the fit information such as error estimate following the documentation.
Name this polynomial as P. P in Matlab is actually the function P=#(x)c(1)*x.^2+c(2)*x+c(3).
Suppose you have a single point X, then polyval(c,X) outputs the value of P(X). And if x is a vector, polyval(c,x) is a vector corresponding to [P(x(1)), P(x(2)),...].
Now that does not represent what the fit is. Just as a quick hack to see something visually, you can try plot(sort(x),polyval(c,sort(x)),'r','LineWidth',2), ie. you can first sort your data and try plotting on those x-values.
However, it is only a hack because a) your data set may be so irregularly spaced that the spline doesn't represent function or b) evaluating on the whole of your data set is unnecessary and inefficient.
The robust and 'standard' way to plot a 2D function of known analytical form in Matlab is as follows:
Define some evenly-spaced x-values over the interval you want to plot the function. For example, x=1:0.1:10. For example, x=linspace(0,1,100).
Evaluate the function on these x-values
Put the above two components into plot(). plot() can either plot the function as sampled points, or connect the points with automatic spline, which is the default.
(For step 1, quadrature is ambiguous but specific enough of a term to describe this process if you wish to communicate with a single word.)
So, instead of using the x in your original data set, you should do something like:
t=linspace(min(x),max(x),100);
plot(t,polyval(c,t),'r','LineWidth',2)

Find point on the Spline Curve in Flutter

I am having some discrete points, by using which I can plot spline curve(Syncfusion chart) in flutter. But now I have to find the point on that curve i.e. by giving values of x, I need value of y. I am stucked here and don't have any algorithm to apply for that. How did they make graph using discrete point ? There should be some algorithm which can be applied here and get those point.
Please help me out
Thanks in advance!!
I am here with a great solution to this problem, So The idea goes like if we have n points for equilibrium data, then we will assume a polynomial of order n-1(For eg. no. of points on equilibrium curve to be 3 then the polynomial should be quadratic of form y= Ax²+Bx+C). Now as we have 3 variables(A, B, C), then to solve this equation we need 3 equations in terms of A, B and C. These equations are obtained by putting the equilibrium data points, in this case 3 points so we will get 3 equations. These three equations can be solved by using Cramer's rule. After solving the equation we will get the equation of the curve.
The equation thus obtained will be more accurate and as cramer's rule can be obtained to any number of equations, then we can easily obtain polynomial equation of any order.This method is quite big and will be time taking to apply.
This will give you the curve for a given number of points

Using matlab to obtain the vector fields and the angles made by the vector field on a closed curve?

Here is the given system I want to plot and obtain the vector field and the angles they make with the x axis. I want to find the index of a closed curve.
I know how to do this theoretically by choosing convenient points and see how the vector looks like at that point. Also I can always use
to compute the angles. However I am having trouble trying to code it. Please don't mark me down if the question is unclear. I am asking it the way I understand it. I am new to matlab. Can someone point me in the right direction please?
This is a pretty hard challenge for someone new to matlab, I would recommend taking on some smaller challenges first to get you used to matlab's conventions.
That said, Matlab is all about numerical solutions so, unless you want to go down the symbolic maths route (and in that case I would probably opt for Mathematica instead), your first task is to decide on the limits and granularity of your simulated space, then define them so you can apply your system of equations to it.
There are lots of ways of doing this - some more efficient - but for ease of understanding I propose this:
Define the axes individually first
xpts = -10:0.1:10;
ypts = -10:0.1:10;
tpts = 0:0.01:10;
The a:b:c syntax gives you the lower limit (a), the upper limit (c) and the spacing (b), so you'll get 201 points for the x. You could use the linspace notation if that suits you better, look it up by typing doc linspace into the matlab console.
Now you can create a grid of your coordinate points. You actually end up with three 3d matrices, one holding the x-coords of your space and the others holding the y and t. They look redundant, but it's worth it because you can use matrix operations on them.
[XX, YY, TT] = meshgrid(xpts, ypts, tpts);
From here on you can perform whatever operations you like on those matrices. So to compute x^2.y you could do
x2y = XX.^2 .* YY;
remembering that you'll get a 3d matrix out of it and all the slices in the third dimension (corresponding to t) will be the same.
Some notes
Matlab has a good builtin help system. You can type 'help functionname' to get a quick reminder in the console or 'doc functionname' to open the help browser for details and examples. They really are very good, they'll help enormously.
I used XX and YY because that's just my preference, but I avoid single-letter variable names as a general rule. You don't have to.
Matrix multiplication is the default so if you try to do XX*YY you won't get the answer you expect! To do element-wise multiplication use the .* operator instead. This will do a11 = b11*c11, a12 = b12*c12, ...
To raise each element of the matrix to a given power use .^rather than ^ for similar reasons. Likewise division.
You have to make sure your matrices are the correct size for your operations. To do elementwise operations on matrices they have to be the same size. To do matrix operations they have to follow the matrix rules on sizing, as will the output. You will find the size() function handy for debugging.
Plotting vector fields can be done with quiver. To plot the components separately you have more options: surf, contour and others. Look up the help docs and they will link to similar types. The plot family are mainly about lines so they aren't much help for fields without creative use of the markers, colours and alpha.
To plot the curve, or any other contour, you don't have to test the values of a matrix - it won't work well anyway because of the granularity - you can use the contour plot with specific contour values.
Solving systems of dynamic equations is completely possible, but you will be doing a numeric simulation and your results will again be subject to the granularity of your grid. If you have closed form solutions, like your phi expression, they may be easier to work with conceptually but harder to get working in matlab.
This kind of problem is tractable in matlab but it involves some non-basic uses which are pretty hard to follow until you've got your head round Matlab's syntax. I would advise to start with a 2d grid instead
[XX, YY] = meshgrid(xpts, ypts);
and compute some functions of that like x^2.y or x^2 - y^2. Get used to plotting them using quiver or plotting the coordinates separately in intensity maps or surfaces.

Matlab : Intersect point of curves

Say for example I have data which forms the parabolic curve y=x^2, and I want to read off the x value for a given y value. How do I go about doing this in MATLAB?
If it were a straight line, I could just use the equation of the line of best fit to calculate easily, however I can't do this with a curved line. If I can't find a solution, I'll solve for roots
Thanks in advance.
If all data are arrays (not analytical expressions), I usually do that finding minimal absolute error
x=some_array;
[~,ind]=min(abs(x.^2-y0))
Here y0 is a given y value
If your data are represented by a function, you can use fsolve:
function y = myfun(x)
y=x^2-y0
[x,fval] = fsolve(#myfun,x0,options)
For symbolic computations, one can use solve
syms x
solve(x^2 - y0)
Assuming your two curves are just two vectors of data, I would suggest you use Fast and Robust Curve Intersections from the File Exchange. See also these two similar questions: how to find intersection points when lines are created from an array and Finding where plots may cross with octave / matlab.

Estimating the error when fitting a curve with DCT and polyfit

I have a matlab script that performs curve fitting on a set of curves using polynomials of third, second and first order (using polyfit with the desired order) and also using DCT of 4,3 and 2 coefficients (invoking dct for the whole array and then truncating just the first 4,3 or 2 coeffs).
I'm able to get a graphical view of the accuracy of each curve fitting using polyval and idct for the 2 types of curve fitting, but I was wondering if there is any way of getting a numeric value of the accuracy that makes sense for both approaches (dct and polyfit).
I'm sure this is more a maths question rather than a Matlab question, but maybe there is some way to obtain a simple and elegant way in a array-based algorithm that I haven't thought of yet.
Thanks in advance for your comments!
EDIT: What about correlation? :D
In the cuve fitting tool there should be a residual that uses standard deviation. If you are interested in another way to do it maybe you should use rmse for the entire curve, scripting a function that does something like:
input args : y1 = (curve going to be fitted), y2 = (fitted curve)
For each value in y, sum up the difference y1-y2 squared
Divide with the number of entries
Provided you are now left with a number, return its square root
See http://en.wikipedia.org/wiki/Root-mean-square_deviation#Formula for more.