Is it possible to resume a failed Apache Spark job? - scala

I am trying to run a Spark job over data from multiple Cassandra tables which are grouped as part of the job. I am trying to get an end to end run with a huge data set 13m data points and it has failed over multiple points. As I fix those failures and move ahead, I encounter the next problem which I fix and restart the job again. Is there a way to speed up the testing cycle on real data so that I can restart/resume a previously failed job from a specific checkpoint?

You can checkpoint your RDDs to disk at various midpoints, which would let you restart from there if necessary. You would have to save the intermediates as a sequence file or text file, and do a little work to make sure everything goes to and from disk cleanly.
I find it more useful to start up the spark-shell and build my data flow in there. If you can identify a subset of your data which is representative, even better. Once you get into the REPL you can create RDDs, check the first value or take(100) and print them to stdout, count various result data sets, and so on. The REPL is what makes spark 10x more productive than hadoop for me.
Once I have built, in the REPL, a flow of transformations and actions that gets me the result that I need, then I can form it into a scala file and refactor that to be clean; extract functions that can be reused and unit tested, tune the parallelism, whatever.
I often find myself going back into the REPL when I need to extend my data flow, so I copy and paste code from my scala file to get to a good starting point, and experiment with the extension from there.

Related

Is Apache Beam the right tool for feature pre processing?

So this is a bit of a weird question as it isn't related to how to use the tool but more about why to use it.
I'm deploying a model and thinking of using Apache-beam to run the feature processing tasks using its python API. Documentation is pretty big and complex but I went through most of it, even built a small working pipeline, and it is still not clear this would be the right tool for me.
An example of what I need is the following:
Input data structure:
ID | Timestamp | category
output needed:
category | category count for last 30 minutes (feature example)
This process needs to run every 5 minutes and update the counts.
===> What I fail to understand is if apache can run this pipeline every 5 minutes, read whichever new input data was generated and update the counts of the previous time it ran. And if so, can someone point me in the right direction?
Thank you!
When you run a Beam pipeline manually, it's expected to be started only once. Then it could be either a Bounded (Batch) or Unbounded (Streaming) pipeline. In the first case, it will be stopped after the all your bounded amount of data has been processed, in the second case it will run continuously and expect new data arrival (until it will be stopped manually).
Usually, the type of pipeline depends on data source that you have (Beam IO connectors). For example, if you read from files, then, by default, it's assumed to be a bounded source (limited number of files), but it could be unbounded source as well if you expect to have more new files to arrive and want to read them in the same pipeline.
Also, you can run your batch pipeline periodically with automated tools, like Apache Airflow (or just unix crontab). So, it all depends on your needs and type or data source. I could probably give more specific advice if you could share more details of your data pipeline - type of your data source and environment, an example of input and output results, how often your input data can be updated and so on.

google dataprep (clouddataprep by trifacta) tip: jobs will not be able to run if they are to large

During my cloud dataprep adventures I have come across yet another very annoying bug.
The problem occurs when creating complex flow structures which need to be connected through reference datasets. If a certain limit is crossed in performing a number of unions or a joins with these sets, dataflow is unable to start a job.
I have had a lot of contact with support and they are working on the issue:
"Our Systems Engineer Team was able to determine the root cause resulting into the failed job. They mentioned that the job is too large. That means that the recipe (combined from all datasets) is too big, and Dataflow rejects it. Our engineering team is still investigating approaches to address this.
A workaround is to split the job into two smaller jobs. The first run the flow for the data enrichment, and then use the output as input in the other flow. While it is not ideal, this would be a working solution for the time being."
I ran into the same problem and have a fairly educated guess as to the answer. Keep in mind that DataPrep simply takes all your GUI based inputs and translates it into Apache Beam code. When you pass in a reference data set, it probably writes some AB code that turns the reference data set into a side-input (https://beam.apache.org/documentation/programming-guide/). DataFlow will perform a Parellel Do (ParDo) function where it takes each element from a PCollection, stuffs it into a worker node, and then applies the side-input data for transformation.
So I am pretty sure if the reference sets get too big (which can happen with Joins), the underlying code will take an element from dataset A, pass it to a function with side-input B...but if side-input B is very big, it won't be able to fit into the worker memory. Take a look at the Stackdriver logs for your job to investigate if this is the case. If you see 'GC (Allocation Failure)' in your logs this is a sign of not enough memory.
You can try doing this: suppose you have two CSV files to read in and process, file A is 4 GB and file B is also 4 GB. If you kick off a job to perform some type of Join, it will very quickly outgrow the worker memory and puke. If you CAN, see if you can pre-process in a way where one of the files is in the MB range and just grow the other file.
If your data structures don't lend themselves to that option, you could do what the Sys Engs suggested, split one file up into many small chunks and then feed it to the recipe iteratively against the other larger file.
Another option to test is specifying the compute type for the workers. You can iteratively grow the compute type larger and larger to see if it finally pushes through.
The other option is to code it all up yourself in Apache Beam, test locally, then port to Google Cloud DataFlow.
Hopefully these guys fix the problem soon, they don't make it easy to ask them questions, that's for sure.

spark save simple string to text file

I have a spark job that needs to store the last time it ran to a text file.
This has to work both on HDFS but also on local fs (for testing).
However it seems that this is not at all so straight forward as it seems.
I have been trying with deleting the dir and getting "can't delete" error messages.
Trying to store a simple sting value into a dataframe to parquet and back again.
this is all so convoluted that it made me take a step back.
What's the best way to just store a string (timestamp of last execution in my case) to a file by overwriting it?
EDIT:
The nasty way I use it now is as follows:
sqlc.read.parquet(lastExecution).map(t => "" + t(0)).collect()(0)
and
sc.parallelize(List(lastExecution)).repartition(1).toDF().write.mode(SaveMode.Overwrite).save(tsDir)
This sounds like storing simple application/execution metadata. As such, saving a text file shouldn't need to be done by "Spark" (ie, it shouldn't be done in distributed spark jobs, by workers).
The ideal place for you to put it is in your driver code, typically after constructing your RDDs. That being said, you wouldn't be using the Spark API to do this, you'd rather be doing something as trivial as using a writer or a file output stream. The only catch here is how you'll read it back. Assuming that your driver program runs on the same computer, there shouldn't be a problem.
If this value is to be read by workers in future jobs (which is possibly why you want it in hdfs), and you don't want to use the Hadoop API directly, then you will have to ensure that you have only one partition so that you don't end up with multiple files with the trivial value. This, however, cannot be said for the local storage (it gets stored on the machine where the worker executing the task is running), managing this will simply be going overboard.
My best option would be to use the driver program and create the file on the machine running the driver (assuming it is the same that will be used next time), or, even better, to put it in a database. If this value is needed in jobs, then the driver can simply pass it through.

How to do parallel pipeline?

I have built a scala application in Spark v.1.6.0 that actually combines various functionalities. I have code for scanning a dataframe for certain entries, I have code that performs certain computation on a dataframe, I have code for creating an output, etc.
At the moment the components are 'statically' combined, i.e., in my code I call the code from a component X doing a computation, I take the resulting data and call a method of component Y that takes the data as input.
I would like to get this more flexible, having a user simply specify a pipeline (possibly one with parallel executions). I would assume that the workflows are rather small and simple, as in the following picture:
However, I do not know how to best approach this problem.
I could build the whole pipeline logic myself, which will probably result in quite some work and possibly some errors too...
I have seen that Apache Spark comes with a Pipeline class in the ML package, however, it does not support parallel execution if I understand correctly (in the example the two ParquetReader could read and process the data at the same time)
there is apparently the Luigi project that might do exactly this (however, it says on the page that Luigi is for long-running workflows, whereas I just need short-running workflows; Luigi might be overkill?)?
What would you suggest for building work/dataflows in Spark?
I would suggest to use Spark's MLlib pipeline functionality, what you describe sounds like it would fit the case well. One nice thing about it is that it allows Spark to optimize the flow for you, in a way that is probably smarter than you can.
You mention it can't read the two Parquet files in parallel, but it can read each separate file in a distributed way. So rather than having N/2 nodes process each file separately, you would have N nodes process them in series, which I'd expect to give you a similar runtime, especially if the mapping to y-c is 1-to-1. Basically, you don't have to worry about Spark underutilizing your resources (if your data is partitioned properly).
But actually things may even be better, because Spark is smarter at optimising the flow than you are. An important thing to keep in mind is that Spark may not do things exactly in the way and in the separate steps as you define them: when you tell it to compute y-c it doesn't actually do that right away. It is lazy (in a good way!) and waits until you've built up the whole flow and ask it for answers, at which point it analyses the flow, applies optimisations (e.g. one possibility is that it can figure out it doesn't have to read and process a large chunk of one or both of the Parquet files, especially with partition discovery), and only then executes the final plan.

Recover standard out from a failed Hadoop job

I'm running a large Hadoop streaming job where I process a large list of files with each file being processed as a single unit. To do this, my input to my streaming job is a single file with a list of all the file names on separate lines.
In general, this works well. However, I ran into an issue where I was partially through a large job (~36%) when Hadoop ran into some files with issues and for some reason it seemed to crash the entire job. If the job had completed successfully, what would have been printed to standard out would be a line for each file as it was completed along with some stats from my program that's processing each file. However, with this failed job, when I try to look at the output that would have been sent to standard out, it is empty. I know that roughly 36% of the files were processed (because I'm saving the data to a database), but it's not easy for me to generate a list of which files were successfully processed and which ones remain. Is there anyway to recover this logging to standard out?
One thing I can do is look at all of the log files for the completed/failed tasks, but this seems more difficult to me and I'm not sure how to go about retrieving the good/bad list of files this way.
Thanks for any suggestions.
Hadoop captures system.out data here :
/mnt/hadoop/logs/userlogs/task_id
However, I've found this unreliable, and Hadoop jobs dont usually use standard out for debugging, rather - the convetion is to use counters.
For each of your documents, you can summarize document characteristics : like length, number of normal ascii chars, number of new lines.
Then, you can have 2 counters: a counter for "good" files, and a counter for "bad" files.
It probably be pretty easy to note that the bad files have something in common [no data, too much data, or maybe some non printable chars].
Finally, you obviously will have to look at the results after the job is done running.
The problem, of course, with system.out statements is that the jobs running on various machines can't integrate their data. Counters get around this problem - they are easily integrated into a clear and accurate picture of the overall job.
Of course, the problem with counters is the information content is entirely numeric, but, with a little creativity, you can easily find ways to quantitatively describe the data in a meaningfull way.
WORST CASE SCENARIO : YOU REALLY NEED TEXT DEBUGGING, and you dont want it in a temp file
In this case, you can use MultipleOutputs to write out ancillary files with other data in them. You can emit records to these files in the same way as you would for the part-r-0000* data.
In the end, I think you will find that, ironically, the restriction of having to use counters will increase the readability of your jobs : it is pretty intuitive, once you think about it, to debug using numerical counts rather than raw text --- i find, quite often that much of my debugging print statements are, when cut down to their raw information content, are basically just counters...