I want to solve, in MatLab, a linear system (corresponding to a PDE system of two equations written in finite difference scheme). The action of the system matrix (corresponding to one of the diffusive terms of the PDE system) reads, symbolically (u is one of the unknown fields, n is the time step, j is the grid point):
and fully:
The above matrix has to be intended as A, where A*U^n+1 = B is the system. U contains the 'u' and the 'v' (second unknown field of the PDE system) alternatively: U = [u_1,v_1,u_2,v_2,...,u_J,v_J].
So far I have been filling this matrix using spdiags and diag in the following expensive way:
E=zeros(2*J,1);
E(1:2:2*J) = 1;
E(2:2:2*J) = 0;
Dvec=zeros(2*J,1);
for i=3:2:2*J-3
Dvec(i)=D_11((i+1)/2);
end
for i=4:2:2*J-2
Dvec(i)=D_21(i/2);
end
A = diag(Dvec)*spdiags([-E,-E,2*E,2*E,-E,-E],[-3,-2,-1,0,1,2],2*J,2*J)/(dx^2);`
and for the solution
[L,U]=lu(A);
y = L\B;
U(:) =U\y;
where B is the right hand side vector.
This is obviously unreasonably expensive because it needs to build a JxJ matrix, do a JxJ matrix multiplication, etc.
Then comes my question: is there a way to solve the system without passing MatLab a matrix, e.g., by passing the vector Dvec or alternatively directly D_11 and D_22?
This would spare me a lot of memory and processing time!
Matlab doesn't store sparse matrices as JxJ arrays but as lists of size O(J). See
http://au.mathworks.com/help/matlab/math/constructing-sparse-matrices.html
Since you are using the spdiags function to construct A, Matlab should already recognize A as sparse and you should indeed see such a list if you display A in console view.
For a tridiagonal matrix like yours, the L and U matrices should already be sparse.
So you just need to ensure that the \ operator uses the appropriate sparse algorithm according to the rules in http://au.mathworks.com/help/matlab/ref/mldivide.html. It's not clear whether the vector B will already be considered sparse, but you could recast it as a diagonal matrix which should certainly be considered sparse.
Related
So I'm trying to implement an EM-Algorithm to train a Gaussian Class Conditional model for classifying data. I'm stuck in the M-step at the moment because I can't figure out how to calculate the covariance matrix.
The problem is I have a big data set and using a for loop to go through each point would be way to slow. I also can't use the covariance function cov(), because I need to use a mean which I calculated using this formula(mu symbol one)
Is there a way to adjust cov() to use the mean I want? Or is there another way I could do this without for loops?
Edit: Forgot to explain what the data matrix is like. Its an nx3 where each row is a data point.
It technically needs to work for the general case nxm but n is usually really big(1000 or more) while m is relatively small.
You can calculate your covariance matrix manually. Let data be the matrix containing all your variables (for example, [x y]) and mu your custom mean, proceed as follows:
n = size(data,1);
data_dem = data - (ones(n,1) * mu);
cov_mat = (data_dem.' * data_dem) ./ (n - 1);
Notice that I used the Bessel's Correction (n-1 instead of n) because the Matlab cov function uses it, unless you specify the third argument as 1:
cov_mat = cov(x,y,1);
C = cov(___,w) specifies the normalization weight for any of the
previous syntaxes. When w = 0 (default), C is normalized by the number
of observations-1. When w = 1, it is normalized by the number of
observations.
I am using IPOPT in MATLAB to run an optimization and I am running into some issues where it says:
Hessian must be an n x n sparse, symmetric and lower triangular matrix
with row indices in increasing order, where n is the number of variables.
After looking at my Hessian Matrix, I found that the non-symmetric elements it is complaining about are very close, here is an example:
H(k,j) = 2.956404205984938
H(j,k) = 2.956404205984939
Obviously these elements are close enough and there are some numerical round-off issues or something of the like. Also, when I call MATLABs issymmetric function with H as an input, I get false. Is there a way to forget about these very small differences in symmetry?
A little more info:
I am using an optimized matlabFunction to actually calculate the entire hessian (H), then I did some postprocessing before passing it to IPOPT:
H = tril(H);
H = sparse(H);
The tril command generates a lower triangular matrix, so these numeral differences should not come into play. So, the issue might be that it is complaining that the sparse command passes back increasing column indices and not increasing row indices. Is there a way to change this so that it passes back the sparse matrix in increasing row indices?
If H is very close to symmetric but not quite, and you need to force it to be exactly symmetric, a standard way to do this would be to say H = (H+H')./2.
What's the best way to do the following (in Matlab) if I have two matrices A and B, let'say both of size m-by-n:
C = zeros(m,m);
for t=1:n
C=C+A(:,t)*B(:,t)';
end
This is nothing more than
C = A*B';
where A and B are each m-by-n. I'm not sure that you're going to get more efficient than that unless the matrices have special properties.
One place where you might get a benefit from using bsxfun for matrix multiplication is when the dimensions are sufficiently large (probably 100-by-100 or more) and one matrix is diagonal, e.g.:
A = rand(1e2);
B = diag(rand(1,1e2));
C = bsxfun(#times,A,diag(B).');
This occurs in many matrix transforms – see the code for sqrtm for example (edit sqrtm).
I need to solve the following SOCP in Matlab:
argmin_x ||R*x||_2 s.t. s^H * x = 1 and ||x||_2 < d,
where x is an Nx1 vector and R is an MxN matrix.
CVX can solve this type of problem. However, CVX requires me to give R and does not allow me to instead give a function handle that will return R*x. This is a problem for me since once R becomes large, computing R*x directly takes too long. There exists an efficient algorithm for computing R*x that I would like to take advantage of, so I am hoping that there is another SOCP solver that I could use.
I have an array of valued double M where size(M)=15000
I need to convert this array to a diagonal matrix with command diag(M)
but i get the famous error out of memory
I run matlab with option -nojvm to gain memory space
and with the optin 3GB switch on windows
i tried also to convert my array to double precision
but the problem persist
any other idea?
There are much better ways to do whatever you're probably trying to do than generating the full diagonal matrix (which will be extremely sparse).
Multiplying that matrix, which has 225 million elements, by other matrices will also take a very long time.
I suggest you restructure your algorithm to take advantage of the fact that:
diag(M)(a, b) =
M(a) | a == b
0 | a != b
You'll save a huge amount of time and memory and whoever is paying you will be happier.
This is what a diagonal matrix looks like:
Every entry except those along the diagonal of the matrix (the ones where row index equals the column index) is zero. Relating this example to your provided values, diag(M) = A and M(n) = An
Use saprse matrix
M = spdiags( M, 0, numel(M), numel(M) );
For more info see matlab doc on spdiags and on sparse matrices in general.
If you have an n-by-n square matrix, M, you can directly extract the diagonal elements into a row vector via
n = size(M,1); % Or length(M), but this is more general
D = M(1:n+1:end); % 1-by-n vector containing diagonal elements of M
If you have an older version of Matlab, the above may even be faster than using diag (if I recall, diag wasn't always a compiled function). Then, if you need to save memory and only need the diagonal of M and can get rid of the rest, you can do this:
M(:) = 0; % Zero out M
M(1:n+1:end) = D; % Insert diagonal elements back into M
clear D; % Clear D from memory
This should not allocate much more than about (n^2+n)*8 = n*(n+1)*8 bytes at any one time for double precision values (some will needed for indexing operations). There are other ways to do the above that might save a bit more if you need a (full, non-sparse) n-by-n diagonal matrix, but there's no way to get around that you'll need n^2*8 bytes at a minimum just to store the matrix of doubles.
However, you're still likely to run into problems. I'd investigate sparse datatypes as #user2379182 suggests. Or rework you algorithms. Or better yet, look into obtaining 64-bit Matlab and/or a 64-bit OS!