Is it possible to vectorize a loop that goes through different index mappings? For example:
a = zeros(1, 5);
m = [4 3 5; 5 1 3];
f = [1 2 3; 4 5 6];
for ii = 1:size(m,1)
a(m(ii,:)) = a(m(ii,:)) + f(ii,:);
end
Gives output:
a = [5 0 2+6 1 3+4] = [5 0 8 1 7]
Can this be done without the for loop?
This is a classic case of accumarray. accumarray works by providing a set of keys and a set of values associated with each key. accumarray groups all values that belong to the same key and does something to all of the values. The default behaviour is to sum all of the values that belong to the same key together, which is what you're after.
In your case, m are the keys and f are the values you want to add up that belong to the same key. Therefore:
>> a = accumarray(m(:), f(:))
a =
5
0
8
1
7
In general, you may have keys that are missing. Therefore, you may opt to specify the output dimensions of the output array where it should be the maximum key value seen in m:
a = accumarray(m(:), f(:), [max(f(:)), 1]);
This is of course assuming that f consists of strictly positive values.
In general, if you have floating point numbers in f, then accumarray out of the box won't work because the keys are assumed to be strictly positive and integer. However, a common trick is to assign a unique ID to each value of f and use this as the input into accumarray. The third output of unique should do this for you. You'll also need the first output of unique to help you figure out which sum belongs to what key:
[msorted,~,id] = unique(m);
a = accumarray(id, f(:));
out = [msorted a];
out will contain a 2 column matrix where each row gives you a unique value in m and the associated sum for all values that shared the same key in m.
Related
I am working with a n x 1 matrix, A, that has repeating values inside it:
A = [0;1;2;3;4; 0;1;2;3;4; 0;1;2;3;4; 0;1;2;3;4]
which correspond to an n x 1 matrix of B values:
B = [2;4;6;8;10; 3;5;7;9;11; 4;6;8;10;12; 5;7;9;11;13]
I am attempting to produce a generalised code to place each repetition into a separate column and store it into Aa and Bb, e.g.:
Aa = [0 0 0 0 Bb = [2 3 4 5
1 1 1 1 4 5 6 7
2 2 2 2 6 7 8 9
3 3 3 3 8 9 10 11
4 4 4 4] 10 11 12 13]
Essentially, each repetition from A and B needs to be copied into the next column and then deleted from the first column
So far I have managed to identify how many repetitions there are and copy the entire column over to the next column and then the next for the amount of repetitions there are but my method doesn't shift the matrix rows to columns as such.
clc;clf;close all
A = [0;1;2;3;4;0;1;2;3;4;0;1;2;3;4;0;1;2;3;4];
B = [2;4;6;8;10;3;5;7;9;11;4;6;8;10;12;5;7;9;11;13];
desiredCol = 1; %next column to go to
destinationCol = 0; %column to start on
n = length(A);
for i = 2:1:n-1
if A == 0;
A = [ A(:, 1:destinationCol)...
A(:, desiredCol+1:destinationCol)...
A(:, desiredCol)...
A(:, destinationCol+1:end) ];
end
end
A = [...] retrieved from Move a set of N-rows to another column in MATLAB
Any hints would be much appreciated. If you need further explanation, let me know!
Thanks!
Given our discussion in the comments, all you need is to use reshape which converts a matrix of known dimensions into an output matrix with specified dimensions provided that the number of elements match. You wish to transform a vector which has a set amount of repeating patterns into a matrix where each column has one of these repeating instances. reshape creates a matrix in column-major order where values are sampled column-wise and the matrix is populated this way. This is perfect for your situation.
Assuming that you already know how many "repeats" you're expecting, we call this An, you simply need to reshape your vector so that it has T = n / An rows where n is the length of the vector. Something like this will work.
n = numel(A); T = n / An;
Aa = reshape(A, T, []);
Bb = reshape(B, T, []);
The third parameter has empty braces and this tells MATLAB to infer how many columns there will be given that there are T rows. Technically, this would simply be An columns but it's nice to show you how flexible MATLAB can be.
If you say you already know the repeated subvector, and the number of times it repeats then it is relatively straight forward:
First make your new A matrix with the repmat function.
Then remap your B vector to the same size as you new A matrix
% Given that you already have the repeated subvector Asub, and the number
% of times it repeats; An:
Asub = [0;1;2;3;4];
An = 4;
lengthAsub = length(Asub);
Anew = repmat(Asub, [1,An]);
% If you can assume that the number of elements in B is equal to the number
% of elements in A:
numberColumns = size(Anew, 2);
newB = zeros(size(Anew));
for i = 1:numberColumns
indexStart = (i-1) * lengthAsub + 1;
indexEnd = indexStart + An;
newB(:,i) = B(indexStart:indexEnd);
end
If you don't know what is in your original A vector, but you do know it is repetitive, if you assume that the pattern has no repeats you can use the find function to find when the first element is repeated:
lengthAsub = find(A(2:end) == A(1), 1);
Asub = A(1:lengthAsub);
An = length(A) / lengthAsub
Hopefully this fits in with your data: the only reason it would not is if your subvector within A is a pattern which does not have unique numbers, such as:
A = [0;1;2;3;2;1;0; 0;1;2;3;2;1;0; 0;1;2;3;2;1;0; 0;1;2;3;2;1;0;]
It is worth noting that from the above intuitively you would have lengthAsub = find(A(2:end) == A(1), 1) - 1;, But this is not necessary because you are already effectively taking the one off by only looking in the matrix A(2:end).
How do I find the index of the 2 maximum values of a 1D array in MATLAB? Mine is an array with a list of different scores, and I want to print the 2 highest scores.
You can use sort, as #LuisMendo suggested:
[B,I] = sort(array,'descend');
This gives you the sorted version of your array in the variable B and the indexes of the original position in I sorted from highest to lowest. Thus, B(1:2) gives you the highest two values and I(1:2) gives you their indices in your array.
I'll go for an O(k*n) solution, where k is the number of maximum values you're looking for, rather than O(n log n):
x = [3 2 5 4 7 3 2 6 4];
y = x; %// make a copy of x because we're going to modify it
[~, m(1)] = max(y);
y(m(1)) = -Inf;
[~, m(2)] = max(y);
m =
5 8
This is only practical if k is less than log n. In fact, if k>=3 I would put it in a loops, which may offend the sensibilities of some. ;)
To get the indices of the two largest elements: use the second output of sort to get the sorted indices, and then pick the last two:
x = [3 2 5 4 7 3 2 6 4];
[~, ind] = sort(x);
result = ind(end-1:end);
In this case,
result =
8 5
I have a <206x193> matrix A. It contains the values of a parameter at 206 different locations at 193 time steps. I am interested in the maximum value at each location over all times as well as the corresponding indices. I have another matrix B with the same dimensions of A and I'm interested in values for each location at the time that A's value at that location was maximal.
I've tried [max_val pos] = max(A,[],2), which gives the right maximum values, but A(pos) does not equal max_val.
How exactly does this function work?
I tried a smaller example as well. Still I don't understand the meaning of the indices....
>> H
H(:,:,1) =
1 2
3 4
H(:,:,2) =
5 6
7 8
>> [val pos] = max(H,[],2)
val(:,:,1) =
2
4
val(:,:,2) =
6
8
pos(:,:,1) =
2
2
pos(:,:,2) =
2
2
The indices in idx represent the index of the max value in the corresponding row. You can use sub2ind to create a linear index if you want to test if A(pos)=max_val
A=rand(206, 193);
[max_val, idx]=max(A, [], 2);
A_max=A(sub2ind(size(A), (1:size(A,1))', idx));
Similarly, you can access the values of B with:
B_Amax=B(sub2ind(size(A), (1:size(A,1))', idx));
From your example:
H(:,:,2) =
5 6
7 8
[val pos] = max(H,[],2)
val(:,:,2) =
6
8
pos(:,:,2) =
2
2
The reason why pos(:,:,2) is [2; 2] is because the maximum is at position 2 for both rows.
max is a primarily intended for use with vectors. In normal mode, even the multi-dimensional arrays are treated as a series of vectors along which the max function is applied.
So, to get the values in B at each location at the time where A is maximum, you should
// find the maximum values and positions in A
[c,i] = max(A, [], 2);
// iterate along the first dimension, to retrieve the corresponding values in B
C = [];
for k=1:size(A,1)
C(k) = B(k,i(k));
end
You can refer to #Jigg's answer for a more concise way of creating matrix C
I have two vectors with the same elements but their order is not same. For eg
A
10
9
8
B
8
9
10
I want to find the mapping between the two
B2A
3
2
1
How can I do this in matlab efficiently?
I think the Matlab sort is efficient. So:
[~,I]=sort(A); %sort A; we want the indices, not the values
[~,J]=sort(B); %same with B
%I(1) and J(1) both point to the smallest value, and a similar statement is true
%for other pairs, even with repeated values.
%Now, find the index vector that sorts I
[~,K]=sort(I);
%if K(1) is k, then A(k) is the kth smallest entry in A, and the kth smallest
%entry in B is J(k)
%so B2A(1)=J(k)=J(K(1)), where BSA is the desired permutation vector
% A similar statement holds for the other entries
%so finally
B2A=J(K);
if the above were in script "findB2A" the following should be a check for it
N=1e4;
M=100;
A=floor(M*rand(1,N));
[~,I]=sort(rand(1,N));
B=A(I);
findB2A;
all(A==B(B2A))
There are a couple of ways of doing this. The most efficient in terms of lines of code is probably using ismember(). The return values are [Lia,Locb] = ismember(A,B), where Locb are the indices in B which correspond to the elements of A. You can do [~, B2A] = ismember(A, B) to get the result you want. If your version of MATLAB does not allow ~, supply a throwaway argument for the first output.
You must ensure that there is a 1-to-1 mapping to get meaningful results, otherwise the index will always point to the first matching element.
Here a solution :
arrayfun(#(x)find(x == B), A)
I tried with bigger arrays :
A = [ 7 5 2 9 1];
B = [ 1 9 7 5 2];
It gives the following result :
ans =
3 4 5 2 1
Edit
Because arrayfun is usually slower than the equivalent loop, here a solution with a loop:
T = length(A);
B2A = zeros(1, length(A));
for tt = 1:T
B2A(1, tt) = find(A(tt) == B);
end
I would go for Joe Serrano's answer using three chained sort's.
Another approach is to test all combinations for equality with bsxfun:
[~, B2A] = max(bsxfun(#eq, B(:), A(:).'));
This gives B2A such that B(B2A) equals A. If you want it the other way around (not clear from your example), simply reverse A and B within bsxfun.
Suppose now I have two vectors of same length:
A = [1 2 2 1];
B = [2 1 2 2];
I would like to create a matrix C whose dim=m*n, m=max(A), n=max(B).
C = zeros(m,n);
for i = 1:length(A)
u = A(i);
v = B(i);
C(u,v)=C(u,v)+1;
end
and get
C =[0 2;
1 1]
More precisely, we treat the according indices in A and B as rows and columns in C, and C(u,v) is the number of elements in {k | A(i)=u and B(i)=v, i = 1,2,...,length(A)}
Is there a faster way to do that?
Yes. Use sparse. It assembles (i.e., sums up) the matrix values for repeating row-column pairs for you. You need an additional vector with the values that will be assembled into the matrix entries. If you use ones(size(A)), you will have exactly what you need - counting of repeated row-column pairs
spA=sparse(A, B, ones(size(A)));
full(spA)
ans =
0 2
1 1
The same can be obtained by simply passing scalar 1 to sparse function instead of a vector of values.
For matrices that have a large number of zero entries this is absolutely crucial that you use sparse storage. Another function you could use is accumarray. It can essentially do the same thing, but also works on dense matrix structure:
AA=accumarray([A;B]', 1);
AA =
0 2
1 1
You can pass size argument to accumarray if you want to create a matrix of specific size
AA=accumarray([A;B]', 1, [2 3]);
AA =
0 2 0
1 1 0
Note that you can actually also make it produce sparse matrices, and use a different operator in assembly (i.e., not necessarily a sum)
AA=accumarray([A;B]', 1, [2 3], #sum, 0, true)
will produce a sparse matrix (last parameter set to true) using sum for assembly and 0 as a fill value, i.e. a value which is used in cases a given row-column pair does not exist in A/B.