I have a vector T of length n and m other vectors of the same length with 0 or 1 used as condition to select elements of T. The condition vectors are combined into a matrix I of size n x m.
Is there a one liner to extract a matrix M of values from Tsuch that the i-th column of M are those elements in T that are selected by the condition elements of the i-th column in I?
Example:
T = (1:10)'
I = mod(T,2) == 0
T(I)'
yields
2 4 6 8 10
However
I = mod(T,2:4) == 0
T(I)'
yields an error in the last statement. I see that the columns might select a different number of elements which results in vectors of different lengths (as in the example). However, even this example doesn't work:
I = zeros(10,2)
I(:,1) = mod(T,2)==0
I(:,2) = mod(T,2)==1
Is there any way to achieve the solution in a one liner?
The easiest way I can think of to do something like this is to take advantage of the element-wise multiplication operator .* with your matrix I. Take this as an example:
% these lines are just setup of your problem
m = 10;
n = 10;
T = [1:m]';
I = randi([0 1], m, n);
% 1 liner to create M
M = repmat(T, 1, n) .* I;
What this does is expand T to be the same size as I using repmat and then multiplies all the elements together using .*.
Here is a one linear solution
mat2cell(T(nonzeros(bsxfun(#times,I,(1:numel(T)).'))),sum(I))
First logical index should be converted to numeric index for it we multiply T by each column of I
idx = bsxfun(#times,I,(1:numel(T)).');
But that index contain zeros we should extract those values that correspond to 1s in matrix I:
idx = nonzeros(idx);
Then we extract repeated elements of T :
T2 = T(idx);
so we need to split T2 to 3 parts size of each part is equal to sum of elements of corresponding column of I and mat2cell is very helpful
result = mat2cell(T2,sum(I));
result
ans =
{
[1,1] =
2
4
6
8
10
[2,1] =
3
6
9
[3,1] =
4
8
}
One line solution using cellfun and mat2cell
nColumns = size(I,2); nRows = size(T,1); % Take the liberty of a line to write cleaner code
cellfun(#(i)T(i),mat2cell(I,nRows,ones(nColumns,1)),'uni',0)
What is going on:
#(i)T(i) % defines a function handle that takes a logical index and returns elements from T for those indexes
mat2cell(I,nRows,ones(nColumns,1)) % Split I such that every column is a cell
'uni',0 % Tell cellfun that the function returns non uniform output
Lets say I have this matrice A: [3 x 4]
1 4 7 10
2 5 8 11
3 6 9 12
I want to permute the element of in each column, but they can't change to a different column, so 1 2 3 need to always be part of the first column. So for exemple I want:
3 4 8 10
1 5 7 11
2 6 9 12
3 4 8 11
1 6 7 10
2 5 9 12
1 6 9 11
. . . .
So in one matrix I would like to have all the possible permutation, in this case, there are 3 different choices 3x3x3x3=81possibilities.So my result matrixe should be 81x4, because I only need each time one [1x4]line vector answer, and that 81 time.
An other way to as the question would be (for the same end for me), would be, if I have 4 column vector:
a=[1;2;3]
b=[4;5;6]
c=[7;8;9]
d=[10;11;12;13]
Compare to my previous exemple, each column vector can have a different number of row. Then is like I have 4 boxes, A, B C, D and I can only put one element of a in A, b in B and so on; so I would like to get all the permutation possible with the answer [A B C D] beeing a [1x4] row, and in this case, I would have 3x3x3x4=108 different row. So where I have been missunderstood (my fault), is that I don't want all the different [3x4] matrix answers but just [1x4]lines.
so in this case the answer would be:
1 4 7 10
and 1 4 7 11
and 1 4 7 12
and 1 4 7 13
and 2 4 8 10
and ...
until there are the 108 combinations
The fonction perms in Matlab can't do that since I don't want to permute all the matrix (and btw, this is already a too big matrix to do so).
So do you have any idea how I could do this or is there is a fonction which can do that? I, off course, also could have matrix which have different size. Thank you
Basically you want to get all combinations of 4x the permutations of 1:3.
You could generate these with combvec from the Neural Networks Toolbox (like #brainkz did), or with permn from the File Exchange.
After that it's a matter of managing indices, applying sub2ind (with the correct column index) and rearranging until everything is in the order you want.
a = [1 4 7 10
2 5 8 11
3 6 9 12];
siz = size(a);
perm1 = perms(1:siz(1));
Nperm1 = size(perm1,1); % = factorial(siz(1))
perm2 = permn(1:Nperm1, siz(2) );
Nperm2 = size(perm2,1);
permidx = reshape(perm1(perm2,:)', [Nperm2 siz(1), siz(2)]); % reshape unnecessary, easier for debugging
col_base_idx = 1:siz(2);
col_idx = col_base_idx(ones(Nperm2*siz(1) ,1),:);
lin_idx = reshape(sub2ind(size(a), permidx(:), col_idx(:)), [Nperm2*siz(1) siz(2)]);
result = a(lin_idx);
This avoids any loops or cell concatenation and uses straigh indexing instead.
Permutations per column, unique rows
Same method:
siz = size(a);
permidx = permn(1:siz(1), siz(2) );
Npermidx = size(permidx, 1);
col_base_idx = 1:siz(2);
col_idx = col_base_idx(ones(Npermidx, 1),:);
lin_idx = reshape(sub2ind(size(a), permidx(:), col_idx(:)), [Npermidx siz(2)]);
result = a(lin_idx);
Your question appeared to be a very interesting brain-teaser. I suggest the following:
in = [1,2,3;4,5,6;7,8,9;10,11,12]';
b = perms(1:3);
a = 1:size(b,1);
c = combvec(a,a,a,a);
for k = 1:length(c(1,:))
out{k} = [in(b(c(1,k),:),1),in(b(c(2,k),:),2),in(b(c(3,k),:),3),in(b(c(4,k),:),4)];
end
%and if you want your result as an ordinary array:
out = vertcat(out{:});
b is a 6x3 array that contains all possible permutations of [1,2,3]. c is 4x1296 array that contains all possible combinations of elements in a = 1:6. In the for loop we use number from 1 to 6 to get the permutation in b, and that permutation is used as indices to the column.
Hope that helps
this is another octave friendly solution:
function result = Tuples(A)
[P,n]= size(A);
M = reshape(repmat(1:P, 1, P ^(n-1)), repmat(P, 1, n));
result = zeros(P^ n, n);
for i = 1:n
result(:, i) = A(reshape(permute(M, circshift((1:n)', i)), P ^ n, 1), i);
end
end
%%%example
A = [...
1 4 7 10;...
2 5 8 11;...
3 6 9 12];
result = Tuples(A)
Update:
Question updated that: given n vectors of different length generates a list of all possible tuples whose ith element is from vector i:
function result = Tuples( A)
if exist('repelem') ==0
repelem = #(v,n) repelems(v,[1:numel(v);n]);
end
n = numel(A);
siz = [ cell2mat(cellfun(#numel, A , 'UniformOutput', false))];
tot_prd = prod(siz);
cum_prd=cumprod(siz);
tot_cum = tot_prd ./ cum_prd;
cum_siz = cum_prd ./ siz;
result = zeros(tot_prd, n);
for i = 1: n
result(:, i) = repmat(repelem(A{i},repmat(tot_cum(i),1,siz(i))) ,1,cum_siz(i));
end
end
%%%%example
a = {...
[1;2;3],...
[4;5;6],...
[7;8;9],...
[10;11;12;13]...
};
result =Tuples(a)
This is a little complicated but it works without the need for any additional toolboxes:
You basically want a b element 'truth table' which you can generate like this (adapted from here) if you were applying it to each element:
[b, n] = size(A)
truthtable = dec2base(0:power(b,n)-1, b) - '0'
Now you need to convert the truth table to linear indexes by adding the column number times the total number of rows:
idx = bsxfun(#plus, b*(0:n-1)+1, truthtable)
now you instead of applying this truth table to each element you actually want to apply it to each permutation. There are 6 permutations so b becomes 6. The trick is to then create a 6-by-1 cell array where each element has a distinct permutation of [1,2,3] and then apply the truth table idea to that:
[m,n] = size(A);
b = factorial(m);
permutations = reshape(perms(1:m)',[],1);
permCell = mat2cell(permutations,ones(b,1)*m,1);
truthtable = dec2base(0:power(b,n)-1, b) - '0';
expandedTT = cell2mat(permCell(truthtable + 1));
idx = bsxfun(#plus, m*(0:n-1), expandedTT);
A(idx)
Another answer. Rather specific just to demonstrate the concept, but can easily be adapted.
A = [1,4,7,10;2,5,8,11;3,6,9,12];
P = perms(1:3)'
[X,Y,Z,W] = ndgrid(1:6,1:6,1:6,1:6);
You now have 1296 permutations. If you wanted to access, say, the 400th one:
Permutation_within_column = [P(:,X(400)), P(:,Y(400)), P(:,Z(400)), P(:,W(400))];
ColumnOffset = repmat([0:3]*3,[3,1])
My_permutation = Permutation_within_column + ColumnOffset; % results in valid linear indices
A(My_permutation)
This approach allows you to obtain the 400th permutation on demand; if you prefer to have all possible permutations concatenated in the 3rd dimension, (i.e. a 3x4x1296 matrix), you can either do this with a for loop, or simply adapt the above and vectorise; for example, if you wanted to create a 3x4x2 matrix holding the first two permutations along the 3rd dimension:
Permutations_within_columns = reshape(P(:,X(1:2)),3,1,[]);
Permutations_within_columns = cat(2, Permutations_within_columns, reshape(P(:,Y(1:2)),3,1,[]));
Permutations_within_columns = cat(2, Permutations_within_columns, reshape(P(:,Z(1:2)),3,1,[]));
Permutations_within_columns = cat(2, Permutations_within_columns, reshape(P(:,W(1:2)),3,1,[]));
ColumnOffsets = repmat([0:3]*3,[3,1,2]);
My_permutations = Permutations_within_columns + ColumnOffsets;
A(My_permutations)
This approach enables you to collect a specific subrange, which may be useful if available memory is a concern (i.e. for larger matrices) and you'd prefer to perform your operations by blocks. If memory isn't a concern you can get all 1296 permutations at once in one giant matrix if you wish; just adapt as appropriate (e.g. replicate ColumnOffsets the right number of times in the 3rd dimension)
Okay, so I have a script that will produce my vector of repeated integers of a certain interval, but now theres a particular instance where I need to make sure that once it is shuffled, the numbers do not repeat. So for example, I produced a vector of repeating 1-5, 36 times, shuffled. How do I ensure that there are no repeated numbers after shuffling? And to make things even more complex, I need to produce two such vectors that do not ever have the same value at the same index. For example, lets say 1:5 was repeated twice for these vectors, so then this would be what I'm looking for:
v1 v2
4 2
2 4
3 2
5 3
4 5
1 4
5 1
1 5
3 1
2 3
I made that right now by taking an example of 1 vector and just shifting it off by 1 to create another vector that will satisfy the requirements, but in my situation, that wont actually work because I can't have them be systematically dependent like that.
So I tried a recursive technique to make the script start over if the vectors did not make the cut and as expected, that did not go over so well. I hit my maximum recursive iterations and I've realized this is clearly not the way to go. Is there some other alternative?
EDIT:
So I found a way to satisfy some of the conditions I needed above in the following code:
a = nchoosek(1:5,2);
b = horzcat(a(:,2),a(:,1));
c = vertcat(a,b);
cols = repmat(c,9,1);
cols = cols(randperm(180),:);
I just need to find a way to shuffle cols that will also enforce no repeating numbers in columns, such that cols(i,1) ~= cols(i+1,1) and cols(i,2) ~= cols(i+1,2)
This works, but it probably is not very efficient for a large array:
a = nchoosek(1:5, 2);
while (any(a(1: end - 1, 1) == a(2: end, 1)) ...
|| any(a(1: end - 1, 2) == a(2: end, 2)))
random_indices = randperm(size(a, 1));
a = a(random_indices, :);
end
a
If you want something faster, the trick is to logically insert each row in a place where your conditions are satisfied, rather than randomly re-shuffling. For example:
n1 = 5;
n2 = 9;
a = nchoosek(1:n1, 2);
b = horzcat(a(:,2), a(:,1));
c = vertcat(a, b);
d = repmat(c, n2, 1);
d = d(randperm(n1 * n2), :);
% Perform an "insertion shuffle"
for k = 2: n1 * n2
% Grab row k from array d. Walk down the rows until a position is
% found where row k does not repeat with its upstairs or downstairs
% neighbors.
m = 1;
while (any(d(k,:) == d(m,:)) || any(d(k,:) == d(m+1,:)))
m = m + 1;
end
% Insert row k in the proper position.
if (m < k)
ind = [ 1: m k m+1: k-1 k+1: n1 * n2 ];
else
ind = [ 1: k-1 k+1: m k m+1: n1 * n2 ];
end
d = d(ind,:);
end
d
One way to solve this problem is to think both vectors as being created as follows:
For every row of arrays v1 and v2
Shuffle the array [1 2 3 4 5]
Set the values of v1 and v2 at the current row with the first and second value of the shuffle. Both values will always be different.
Code:
s = [1 2 3 4 5];
Nrows = 36;
solution = zeros(Nrows,2);
for k=1:Nrows
% obtain indexes j for shuffling array s
[x,j] = sort(rand(1,5));
%row k takes the first two values of shuffled array s
solution(k,1:2) = s(j(1:2));
end
v1 = solution(:,1);
v2 = solution(:,2);
Main edit: random => rand,
With this method there is no time wasted in re-rolling repeated numbers because the first and second value of shuffling [1 2 3 4 5] will always be different.
Should you need more than two arrays with different numbers the changes are simple.
I have a vector whose elements identify the indices (per column) that I need to set in a different matrix. Specifically, I have:
A = 7
1
2
and I need to create a matrix B with some number of rows of zeros, except for the elements identified by A. In other words, I want B:
B = zeros(10, 3); % number of rows is known; num columns = size(A)
B(A(1), 1) = 1
B(A(2), 2) = 1
B(A(3), 3) = 1
I would like to do this without having to write a loop.
Any pointers would be appreciated.
Thanks.
Use linear indexing:
B = zeros(10, 3);
B(A(:).'+ (0:numel(A)-1)*size(B,1)) = 1;
The second line can be written equivalently with sub2ind (may be a little slower):
B(sub2ind(size(B), A(:).', 1:numel(A))) = 1;
Given a vector
A = [1,2,3,...,100]
I want to extract all elements, except every n-th. So, for n=5, my output should be
B = [1,2,3,4,6,7,8,9,11,...]
I know that you can access every n-th element by
A(5:5:end)
but I need something like the inverse command.
If this doesn't exist I would iterate over the elements and skip every n-th entry, but that would be the dirty way.
You can eliminate elements like this:
A = 1:100;
removalList = 1:5:100;
A(removalList) = [];
Use a mask. Let's say you have
A = 1 : 100;
Then
m = mod(0 : length(A) - 1, 5);
will be a vector of the same length as A containing the repeated sequence 0 1 2 3 4.
You want everything from A except the elements where m == 4, i.e.
B = A(m ~= 4);
will result in
B == [1 2 3 4 6 7 8 9 11 12 13 14 16 ...]
Or you can use logical indexing:
n = 5; % remove the fifth
idx = logical(zeroes(size(A))); % creates a blank mask
idx(n) = 1; % makes the nth element 1
A(idx) = []; % ta-da!
About the "inversion" command you cited, it is possible to achieve that behavior using logical indexing. You can negate the vector to transform every 1 in 0, and vice-versa.
So, this code will remove any BUT the fifth element:
negatedIdx = ~idx;
A(negatedIdx) = [];
why not use it like this?
say A is your vector
A = 1:100
n = 5
B = A([1:n-1,n+1:end])
then
B=[1 2 3 4 6 7 8 9 10 ...]
One possible solution for your problem is the function setdiff().
In your specific case, the solution would be:
lenA = length(A);
index = setdiff(1:lenA,n:n:lenA);
B = A(index)
If you do it all at once, you can avoid both extra variables:
B = A( setdiff(1:end,n:n:end) )
However, Logical Indexing is a faster option, as tested:
lenA = length(A);
index = true(1, lenA);
index(n:n:lenA) = false;
B = A(index)
All these codes assume that you have specified the variable n, and can adapt to a different value.
For the shortest amount of code, you were nearly there all ready. If you want to adjust your existing array use:
A(n:n:end)=[];
Or if you want a new array called B:
B=A;
B(n:n:end)=[];