Mapping ids of two vectors - matlab

I have two vectors with the same elements but their order is not same. For eg
A
10
9
8
B
8
9
10
I want to find the mapping between the two
B2A
3
2
1
How can I do this in matlab efficiently?

I think the Matlab sort is efficient. So:
[~,I]=sort(A); %sort A; we want the indices, not the values
[~,J]=sort(B); %same with B
%I(1) and J(1) both point to the smallest value, and a similar statement is true
%for other pairs, even with repeated values.
%Now, find the index vector that sorts I
[~,K]=sort(I);
%if K(1) is k, then A(k) is the kth smallest entry in A, and the kth smallest
%entry in B is J(k)
%so B2A(1)=J(k)=J(K(1)), where BSA is the desired permutation vector
% A similar statement holds for the other entries
%so finally
B2A=J(K);
if the above were in script "findB2A" the following should be a check for it
N=1e4;
M=100;
A=floor(M*rand(1,N));
[~,I]=sort(rand(1,N));
B=A(I);
findB2A;
all(A==B(B2A))

There are a couple of ways of doing this. The most efficient in terms of lines of code is probably using ismember(). The return values are [Lia,Locb] = ismember(A,B), where Locb are the indices in B which correspond to the elements of A. You can do [~, B2A] = ismember(A, B) to get the result you want. If your version of MATLAB does not allow ~, supply a throwaway argument for the first output.
You must ensure that there is a 1-to-1 mapping to get meaningful results, otherwise the index will always point to the first matching element.

Here a solution :
arrayfun(#(x)find(x == B), A)
I tried with bigger arrays :
A = [ 7 5 2 9 1];
B = [ 1 9 7 5 2];
It gives the following result :
ans =
3 4 5 2 1
Edit
Because arrayfun is usually slower than the equivalent loop, here a solution with a loop:
T = length(A);
B2A = zeros(1, length(A));
for tt = 1:T
B2A(1, tt) = find(A(tt) == B);
end

I would go for Joe Serrano's answer using three chained sort's.
Another approach is to test all combinations for equality with bsxfun:
[~, B2A] = max(bsxfun(#eq, B(:), A(:).'));
This gives B2A such that B(B2A) equals A. If you want it the other way around (not clear from your example), simply reverse A and B within bsxfun.

Related

Compare elements of two different size matrix and get corresponding indices

How to compare A,B matrices with different size, one-by-one elements have to be compared with each other and get the corresponding indices of either A or B in C matrix.
A={2 4 1};
B={8 7 2 5 4 6};
output : C={1 2}; or C={3 6};
here it is semi-equivalent of what I asked:
for i=1:s
for j=s+1:nGen
if(tOS(p,i)==tOS(p,j))
f1=f1+1;
ti(1,f1)=i;
end
if(tOS(p+1,i)==tOS(p+1,j))
f2=f2+1;
ti(2,f2)=i;
end
end
end
but I'm looking for shorter and optimized bult-in function in Matlab
I assume you want to compare each element of matrix A with each element matrix B (your question is not clear).
You can do this very simply with bsxfun. It's easier to compare linearized (column-vector) versions of A and B, and then reshape the result:
A = randi(5, 3,2); %// example A, size 3x2
B = randi(5, 2,4); %// example B, size 2x4
C = reshape(bsxfun(#eq, A(:), B(:).'), [size(A) size(B)]);
This gives C as a 4D-array (of size 3x2x2x4 in the example). The entry C(m,n,p,q) is 1 if A(m,n) equals B(p,q), and 0 otherwise.

element by element matrix multiplication in Matlab

So I have the following matrices:
A = [1 2 3; 4 5 6];
B = [0.5 2 3];
I'm writing a function in MATLAB that will allow me to multiply a vector and a matrix by element as long as the number of elements in the vector matches the number of columns. In A there are 3 columns:
1 2 3
4 5 6
B also has 3 elements so this should work. I'm trying to produce the following output based on A and B:
0.5 4 9
2 10 18
My code is below. Does anyone know what I'm doing wrong?
function C = lab11(mat, vec)
C = zeros(2,3);
[a, b] = size(mat);
[c, d] = size(vec);
for i = 1:a
for k = 1:b
for j = 1
C(i,k) = C(i,k) + A(i,j) * B(j,k);
end
end
end
end
MATLAB already has functionality to do this in the bsxfun function. bsxfun will take two matrices and duplicate singleton dimensions until the matrices are the same size, then perform a binary operation on the two matrices. So, for your example, you would simply do the following:
C = bsxfun(#times,mat,vec);
Referencing MrAzzaman, bsxfun is the way to go with this. However, judging from your function name, this looks like it's homework, and so let's stick with what you have originally. As such, you need to only write two for loops. You would use the second for loop to index into both the vector and the columns of the matrix at the same time. The outer most for loop would access the rows of the matrix. In addition, you are referencing A and B, which are variables that don't exist in your code. You are also initializing the output matrix C to be 2 x 3 always. You want this to be the same size as mat. I also removed your checking of the length of the vector because you weren't doing anything with the result.
As such:
function C = lab11(mat, vec)
[a, b] = size(mat);
C = zeros(a,b);
for i = 1:a
for k = 1:b
C(i,k) = mat(i,k) * vec(k);
end
end
end
Take special note at what I did. The outer-most for loop accesses the rows of mat, while the inner-most loop accesses the columns of mat as well as the elements of vec. Bear in mind that the number of columns of mat need to be the same as the number of elements in vec. You should probably check for this in your code.
If you don't like using the bsxfun approach, one alternative is to take the vector vec and make a matrix out of this that is the same size as mat by stacking the vector vec on top of itself for as many times as we have rows in mat. After this, you can do element-by-element multiplication. You can do this stacking by using repmat which repeats a vector or matrices a given number of times in any dimension(s) you want. As such, your function would be simplified to:
function C = lab11(mat, vec)
rows = size(mat, 1);
vec_mat = repmat(vec, rows, 1);
C = mat .* vec_mat;
end
However, I would personally go with the bsxfun route. bsxfun basically does what the repmat paradigm does under the hood. Internally, it ensures that both of your inputs have the same size. If it doesn't, it replicates the smaller array / matrix until it is the same size as the larger array / matrix, then applies an element-by-element operation to the corresponding elements in both variables. bsxfun stands for Binary Singleton EXpansion FUNction, which is a fancy way of saying exactly what I just talked about.
Therefore, your function is further simplified to:
function C = lab11(mat, vec)
C = bsxfun(#times, mat, vec);
end
Good luck!

Loop through matrix, find row values that meet constraint, create new column

I am sure something similar has been answered before, but I am new to MATLAB and currently stuck with a very simple problem. I have a matrix M and I would like to do the following: Loop through all the values of a column C and if any of these values are not equal to some value, x copy the corresponding values over into another column in the matrix (call it Z), while leaving those values that did not satisfy the condition alone.
I have tried the following, but it's not doing anything:
rows = size(M,1);
for i = 1:rows
if M(:,x) ~= 0
then M(:,Z) = M(:,x)
end
end
Looking at your comments, this is the gist of what you want to accomplish:
Given a matrix A, choose two columns in this matrix: x and Z.
Given a value d, we wish to find all values within x that are different than some value, d.
Take these locations in x and copy them over to the corresponding locations in Z.
Let's do this step by step. Given your example in your comments:
% // Step #1
A = [1 2 3; 4 5 6; 7 8 10];
x = 1; % //Column x
Z = 3; % //Column Z
d = 1; % //Value to compare to
% //Step #2
loc = A(:,x) ~= d;
%//Step #3
A(loc, Z) = A(loc, x);
Since you're new to MATLAB, let's go through this slowly. The first step is pretty basic MATLAB syntax. It's choosing your parameters as well as some basic set up. The second step will give us a logical array that tells us which rows in column x are not equal to d. The last step will find these corresponding rows in column Z and copy these values over from column x over to Z.
The great thing about MATLAB is that it does these kinds of vectorized operations natively. The best thing for optimization is to try to avoid for loops as much as you can. Only use for loops if you have to repeat heavy computations, or situations where you absolutely cannot avoid for loops.
As a bonus, let's see how MATLAB displays each step that we've talked above (except the first one as it's redundant).
% //Step #2
loc = A(:,x) ~= d
>> loc
loc =
0
1
1
%// Step #3
A(loc, Z) = A(loc, x)
>> A =
1 2 3
4 5 4
7 8 7
Note that loc is a logical array such that 0 is false, and 1 is true. As such, rows 2 and 3 satisfy the condition that these values are not equal to d.
Also, FWIW, welcome to StackOverflow!

Creating a matrix from a function handle (MATLAB)

What I intend to do is very simple but yet I haven't found a proper way to do it. I have a function handle which depends on two variables, for example:
f = #(i,j) i+j
(mine is quite more complicated, though)
What I'd like to do is to create a matrix M such that
M(i,j) = f(i,j)
Of course I could use a nested loop but I'm trying to avoid those. I've already managed to do this in Maple in a quite simple way:
f:=(i,j)->i+j;
M:=Matrix(N,f);
(Where N is the dimension of the matrix) But I need to use MATLAB for this. For now I'm sticking to the nested loops but I'd really appreciate your help!
Use bsxfun:
>> [ii jj] = ndgrid(1:4 ,1:5); %// change i and j limits as needed
>> M = bsxfun(f, ii, jj)
M =
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
If your function f satisfies the following condition:
C = fun(A,B) accepts arrays A and B of arbitrary, but equal size and returns output of the same size. Each element in the output array C is the result of an operation on the corresponding elements of A and B only. fun must also support scalar expansion, such that if A or B is a scalar, C is the result of applying the scalar to every element in the other input array.
you can dispose of ndgrid. Just add a transpose (.') to the first (i) vector:
>> M = bsxfun(f, (1:4).', 1:5)
Function handles can accept matrices as inputs. Simply pass a square matrix of size N where the values corresponds to the row number for i, and a square matrix of size N where the values correspond to the column number for j.
N = 5;
f = #(i,j) i+j;
M = f(meshgrid(1:N+1), meshgrid(1:N+1)')

Update only one matrix element for iterative computation

I have a 3x3 matrix, A. I also compute a value, g, as the maximum eigen value of A. I am trying to change the element A(3,3) = 0 for all values from zero to one in 0.10 increments and then update g for each of the values. I'd like all of the other matrix elements to remain the same.
I thought a for loop would be the way to do this, but I do not know how to update only one element in a matrix without storing this update as one increasingly larger matrix. If I call the element at A(3,3) = p (thereby creating a new matrix Atry) I am able (below) to get all of the values from 0 to 1 that I desired. I do not know how to update Atry to get all of the values of g that I desire. The state of the code now will give me the same value of g for all iterations, as expected, as I do not know how to to update Atry with the different values of p to then compute the values for g.
Any suggestions on how to do this or suggestions for jargon or phrases for me to web search would be appreciated.
A = [1 1 1; 2 2 2; 3 3 0];
g = max(eig(A));
% This below is what I attempted to achieve my solution
clear all
p(1) = 0;
Atry = [1 1 1; 2 2 2; 3 3 p];
g(1) = max(eig(Atry));
for i=1:100;
p(i+1) = p(i)+ 0.01;
% this makes a one giant matrix, not many
%Atry(:,i+1) = Atry(:,i);
g(i+1) = max(eig(Atry));
end
This will also accomplish what you want to do:
A = #(x) [1 1 1; 2 2 2; 3 3 x];
p = 0:0.01:1;
g = arrayfun(#(x) eigs(A(x),1), p);
Breakdown:
Define A as an anonymous function. This means that the command A(x) will return your matrix A with the (3,3) element equal to x.
Define all steps you want to take in vector p
Then "loop" through all elements in p by using arrayfun instead of an actual loop.
The function looped over by arrayfun is not max(eig(A)) but eigs(A,1), i.e., the 1 largest eigenvalue. The result will be the same, but the algorithm used by eigs is more suited for your type of problem -- instead of computing all eigenvalues and then only using the maximum one, you only compute the maximum one. Needless to say, this is much faster.
First, you say 0.1 increments in the text of your question, but your code suggests you are actually interested in 0.01 increments? I'm going to operate under the assumption you mean 0.01 increments.
Now, with that out of the way, let me state what I believe you are after given my interpretation of your question. You want to iterate over the matrix A, where for each iteration you increase A(3, 3) by 0.01. Given that you want all values from 0 to 1, this implies 101 iterations. For each iteration, you want to calculate the maximum eigenvalue of A, and store all these eigenvalues in some vector (which I will call gVec). If this is correct, then I believe you just want the following:
% Specify the "Current" A
CurA = [1 1 1; 2 2 2; 3 3 0];
% Pre-allocate the values we want to iterate over for element (3, 3)
A33Vec = (0:0.01:1)';
% Pre-allocate a vector to store the maximum eigenvalues
gVec = NaN * ones(length(A33Vec), 1);
% Loop over A33Vec
for i = 1:1:length(A33Vec)
% Obtain the version of A that we want for the current i
CurA(3, 3) = A33Vec(i);
% Obtain the maximum eigen value of the current A, and store in gVec
gVec(i, 1) = max(eig(CurA));
end
EDIT: Probably best to paste this code into your matlab editor. The stack-overflow automatic text highlighting hasn't done it any favors :-)
EDIT: Go with Rody's solution (+1) - it is much better!