Leave one out crossvalind in Matlab - matlab

I have extracted HOG features for male and female pictures, now, I'm trying to use the Leave-one-out-method to classify my data.
Due the standard way to write it in Matlab is:
[Train, Test] = crossvalind('LeaveMOut', N, M);
What I should write instead of N and M?
Also, should I write above code statement inside or outside a loop?
this is my code, where I have training folder for Male (80 images) and female (80 images), and another one for testing (10 random images).
for i = 1:10
[Train, Test] = crossvalind('LeaveMOut', N, 1);
SVMStruct = svmtrain(Training_Set (Train), train_label (Train));
Gender = svmclassify(SVMStruct, Test_Set_MF (Test));
end
Notes:
Training_Set: an array consist of HOG features of training folder images.
Test_Set_MF: an array consist of HOG features of test folder images.
N: total number of images in training folder.
SVM should detect which images are male and which are female.

I will focus on how to use crossvalind for the leave-one-out-method.
I assume you want to select random sets inside a loop. N is the length of your data vector. M is the number of randomly selected observations in Test. Respectively M is the number of observations left out in Train. This means you have to set N to the length of your training-set. With M you can specify how many values you want in your Test-output, respectively you want to left out in your Train-output.
Here is an example, selecting M=2 observations out of the dataset.
dataset = [1 2 3 4 5 6 7 8 9 10];
N = length(dataset);
M = 2;
for i = 1:5
[Train, Test] = crossvalind('LeaveMOut', N, M);
% do whatever you want with Train and Test
dataset(Test) % display the test-entries
end
This outputs: (this is generated randomly, so you won't have the same result)
ans =
1 9
ans =
6 8
ans =
7 10
ans =
4 5
ans =
4 7
As you have it in your code according to this post, you need to adjust it for a matrix of features:
Training_Set = rand(10,3); % 10 samples with 3 features each
N = size(Training_Set,1);
M = 2;
for i = 1:5
[Train, Test] = crossvalind('LeaveMOut', N, 2);
Training_Set(Train,:) % displays the data to train
end

Related

How to get all the possible combinations of elements in a matrix, but don't allow exchange of elements inbetween columns?

Lets say I have this matrice A: [3 x 4]
1 4 7 10
2 5 8 11
3 6 9 12
I want to permute the element of in each column, but they can't change to a different column, so 1 2 3 need to always be part of the first column. So for exemple I want:
3 4 8 10
1 5 7 11
2 6 9 12
3 4 8 11
1 6 7 10
2 5 9 12
1 6 9 11
. . . .
So in one matrix I would like to have all the possible permutation, in this case, there are 3 different choices 3x3x3x3=81possibilities.So my result matrixe should be 81x4, because I only need each time one [1x4]line vector answer, and that 81 time.
An other way to as the question would be (for the same end for me), would be, if I have 4 column vector:
a=[1;2;3]
b=[4;5;6]
c=[7;8;9]
d=[10;11;12;13]
Compare to my previous exemple, each column vector can have a different number of row. Then is like I have 4 boxes, A, B C, D and I can only put one element of a in A, b in B and so on; so I would like to get all the permutation possible with the answer [A B C D] beeing a [1x4] row, and in this case, I would have 3x3x3x4=108 different row. So where I have been missunderstood (my fault), is that I don't want all the different [3x4] matrix answers but just [1x4]lines.
so in this case the answer would be:
1 4 7 10
and 1 4 7 11
and 1 4 7 12
and 1 4 7 13
and 2 4 8 10
and ...
until there are the 108 combinations
The fonction perms in Matlab can't do that since I don't want to permute all the matrix (and btw, this is already a too big matrix to do so).
So do you have any idea how I could do this or is there is a fonction which can do that? I, off course, also could have matrix which have different size. Thank you
Basically you want to get all combinations of 4x the permutations of 1:3.
You could generate these with combvec from the Neural Networks Toolbox (like #brainkz did), or with permn from the File Exchange.
After that it's a matter of managing indices, applying sub2ind (with the correct column index) and rearranging until everything is in the order you want.
a = [1 4 7 10
2 5 8 11
3 6 9 12];
siz = size(a);
perm1 = perms(1:siz(1));
Nperm1 = size(perm1,1); % = factorial(siz(1))
perm2 = permn(1:Nperm1, siz(2) );
Nperm2 = size(perm2,1);
permidx = reshape(perm1(perm2,:)', [Nperm2 siz(1), siz(2)]); % reshape unnecessary, easier for debugging
col_base_idx = 1:siz(2);
col_idx = col_base_idx(ones(Nperm2*siz(1) ,1),:);
lin_idx = reshape(sub2ind(size(a), permidx(:), col_idx(:)), [Nperm2*siz(1) siz(2)]);
result = a(lin_idx);
This avoids any loops or cell concatenation and uses straigh indexing instead.
Permutations per column, unique rows
Same method:
siz = size(a);
permidx = permn(1:siz(1), siz(2) );
Npermidx = size(permidx, 1);
col_base_idx = 1:siz(2);
col_idx = col_base_idx(ones(Npermidx, 1),:);
lin_idx = reshape(sub2ind(size(a), permidx(:), col_idx(:)), [Npermidx siz(2)]);
result = a(lin_idx);
Your question appeared to be a very interesting brain-teaser. I suggest the following:
in = [1,2,3;4,5,6;7,8,9;10,11,12]';
b = perms(1:3);
a = 1:size(b,1);
c = combvec(a,a,a,a);
for k = 1:length(c(1,:))
out{k} = [in(b(c(1,k),:),1),in(b(c(2,k),:),2),in(b(c(3,k),:),3),in(b(c(4,k),:),4)];
end
%and if you want your result as an ordinary array:
out = vertcat(out{:});
b is a 6x3 array that contains all possible permutations of [1,2,3]. c is 4x1296 array that contains all possible combinations of elements in a = 1:6. In the for loop we use number from 1 to 6 to get the permutation in b, and that permutation is used as indices to the column.
Hope that helps
this is another octave friendly solution:
function result = Tuples(A)
[P,n]= size(A);
M = reshape(repmat(1:P, 1, P ^(n-1)), repmat(P, 1, n));
result = zeros(P^ n, n);
for i = 1:n
result(:, i) = A(reshape(permute(M, circshift((1:n)', i)), P ^ n, 1), i);
end
end
%%%example
A = [...
1 4 7 10;...
2 5 8 11;...
3 6 9 12];
result = Tuples(A)
Update:
Question updated that: given n vectors of different length generates a list of all possible tuples whose ith element is from vector i:
function result = Tuples( A)
if exist('repelem') ==0
repelem = #(v,n) repelems(v,[1:numel(v);n]);
end
n = numel(A);
siz = [ cell2mat(cellfun(#numel, A , 'UniformOutput', false))];
tot_prd = prod(siz);
cum_prd=cumprod(siz);
tot_cum = tot_prd ./ cum_prd;
cum_siz = cum_prd ./ siz;
result = zeros(tot_prd, n);
for i = 1: n
result(:, i) = repmat(repelem(A{i},repmat(tot_cum(i),1,siz(i))) ,1,cum_siz(i));
end
end
%%%%example
a = {...
[1;2;3],...
[4;5;6],...
[7;8;9],...
[10;11;12;13]...
};
result =Tuples(a)
This is a little complicated but it works without the need for any additional toolboxes:
You basically want a b element 'truth table' which you can generate like this (adapted from here) if you were applying it to each element:
[b, n] = size(A)
truthtable = dec2base(0:power(b,n)-1, b) - '0'
Now you need to convert the truth table to linear indexes by adding the column number times the total number of rows:
idx = bsxfun(#plus, b*(0:n-1)+1, truthtable)
now you instead of applying this truth table to each element you actually want to apply it to each permutation. There are 6 permutations so b becomes 6. The trick is to then create a 6-by-1 cell array where each element has a distinct permutation of [1,2,3] and then apply the truth table idea to that:
[m,n] = size(A);
b = factorial(m);
permutations = reshape(perms(1:m)',[],1);
permCell = mat2cell(permutations,ones(b,1)*m,1);
truthtable = dec2base(0:power(b,n)-1, b) - '0';
expandedTT = cell2mat(permCell(truthtable + 1));
idx = bsxfun(#plus, m*(0:n-1), expandedTT);
A(idx)
Another answer. Rather specific just to demonstrate the concept, but can easily be adapted.
A = [1,4,7,10;2,5,8,11;3,6,9,12];
P = perms(1:3)'
[X,Y,Z,W] = ndgrid(1:6,1:6,1:6,1:6);
You now have 1296 permutations. If you wanted to access, say, the 400th one:
Permutation_within_column = [P(:,X(400)), P(:,Y(400)), P(:,Z(400)), P(:,W(400))];
ColumnOffset = repmat([0:3]*3,[3,1])
My_permutation = Permutation_within_column + ColumnOffset; % results in valid linear indices
A(My_permutation)
This approach allows you to obtain the 400th permutation on demand; if you prefer to have all possible permutations concatenated in the 3rd dimension, (i.e. a 3x4x1296 matrix), you can either do this with a for loop, or simply adapt the above and vectorise; for example, if you wanted to create a 3x4x2 matrix holding the first two permutations along the 3rd dimension:
Permutations_within_columns = reshape(P(:,X(1:2)),3,1,[]);
Permutations_within_columns = cat(2, Permutations_within_columns, reshape(P(:,Y(1:2)),3,1,[]));
Permutations_within_columns = cat(2, Permutations_within_columns, reshape(P(:,Z(1:2)),3,1,[]));
Permutations_within_columns = cat(2, Permutations_within_columns, reshape(P(:,W(1:2)),3,1,[]));
ColumnOffsets = repmat([0:3]*3,[3,1,2]);
My_permutations = Permutations_within_columns + ColumnOffsets;
A(My_permutations)
This approach enables you to collect a specific subrange, which may be useful if available memory is a concern (i.e. for larger matrices) and you'd prefer to perform your operations by blocks. If memory isn't a concern you can get all 1296 permutations at once in one giant matrix if you wish; just adapt as appropriate (e.g. replicate ColumnOffsets the right number of times in the 3rd dimension)

Shifting repeating rows to a new column in a matrix

I am working with a n x 1 matrix, A, that has repeating values inside it:
A = [0;1;2;3;4; 0;1;2;3;4; 0;1;2;3;4; 0;1;2;3;4]
which correspond to an n x 1 matrix of B values:
B = [2;4;6;8;10; 3;5;7;9;11; 4;6;8;10;12; 5;7;9;11;13]
I am attempting to produce a generalised code to place each repetition into a separate column and store it into Aa and Bb, e.g.:
Aa = [0 0 0 0 Bb = [2 3 4 5
1 1 1 1 4 5 6 7
2 2 2 2 6 7 8 9
3 3 3 3 8 9 10 11
4 4 4 4] 10 11 12 13]
Essentially, each repetition from A and B needs to be copied into the next column and then deleted from the first column
So far I have managed to identify how many repetitions there are and copy the entire column over to the next column and then the next for the amount of repetitions there are but my method doesn't shift the matrix rows to columns as such.
clc;clf;close all
A = [0;1;2;3;4;0;1;2;3;4;0;1;2;3;4;0;1;2;3;4];
B = [2;4;6;8;10;3;5;7;9;11;4;6;8;10;12;5;7;9;11;13];
desiredCol = 1; %next column to go to
destinationCol = 0; %column to start on
n = length(A);
for i = 2:1:n-1
if A == 0;
A = [ A(:, 1:destinationCol)...
A(:, desiredCol+1:destinationCol)...
A(:, desiredCol)...
A(:, destinationCol+1:end) ];
end
end
A = [...] retrieved from Move a set of N-rows to another column in MATLAB
Any hints would be much appreciated. If you need further explanation, let me know!
Thanks!
Given our discussion in the comments, all you need is to use reshape which converts a matrix of known dimensions into an output matrix with specified dimensions provided that the number of elements match. You wish to transform a vector which has a set amount of repeating patterns into a matrix where each column has one of these repeating instances. reshape creates a matrix in column-major order where values are sampled column-wise and the matrix is populated this way. This is perfect for your situation.
Assuming that you already know how many "repeats" you're expecting, we call this An, you simply need to reshape your vector so that it has T = n / An rows where n is the length of the vector. Something like this will work.
n = numel(A); T = n / An;
Aa = reshape(A, T, []);
Bb = reshape(B, T, []);
The third parameter has empty braces and this tells MATLAB to infer how many columns there will be given that there are T rows. Technically, this would simply be An columns but it's nice to show you how flexible MATLAB can be.
If you say you already know the repeated subvector, and the number of times it repeats then it is relatively straight forward:
First make your new A matrix with the repmat function.
Then remap your B vector to the same size as you new A matrix
% Given that you already have the repeated subvector Asub, and the number
% of times it repeats; An:
Asub = [0;1;2;3;4];
An = 4;
lengthAsub = length(Asub);
Anew = repmat(Asub, [1,An]);
% If you can assume that the number of elements in B is equal to the number
% of elements in A:
numberColumns = size(Anew, 2);
newB = zeros(size(Anew));
for i = 1:numberColumns
indexStart = (i-1) * lengthAsub + 1;
indexEnd = indexStart + An;
newB(:,i) = B(indexStart:indexEnd);
end
If you don't know what is in your original A vector, but you do know it is repetitive, if you assume that the pattern has no repeats you can use the find function to find when the first element is repeated:
lengthAsub = find(A(2:end) == A(1), 1);
Asub = A(1:lengthAsub);
An = length(A) / lengthAsub
Hopefully this fits in with your data: the only reason it would not is if your subvector within A is a pattern which does not have unique numbers, such as:
A = [0;1;2;3;2;1;0; 0;1;2;3;2;1;0; 0;1;2;3;2;1;0; 0;1;2;3;2;1;0;]
It is worth noting that from the above intuitively you would have lengthAsub = find(A(2:end) == A(1), 1) - 1;, But this is not necessary because you are already effectively taking the one off by only looking in the matrix A(2:end).

How can I train my ANFIS dataset in MATLAB?

I have some following dataset of 9 years that represents the people per infected of dengue from 2007 to 2015 divide in four quadrant in each year. How can I prepare my dataset for ANFIS. and train them to predict previous year record ?
For an FIS with N inputs, training data has N+1 columns, where the first N columns contain input data and the final column contains output data. Here you can choose to have 2 inputs (the year and the quadrant) and one output (the value). In this way for 9 years, the number of rows becomes 36. The number of columns is equal to the number of inputs + output (2+1).
a = 1:4;
b = (2007:2015)';
[A,B] = meshgrid(a,b);
A = A(:);
B = B(:);
C = ones(36,1); % you should insert your numbers here from the table
trainData = [B A C]
Now try to use genfis to generate a FIS:
numMFs = 5; % number of membership function
mfType = 'gbellmf'; % type of MF
fis = genfis1(trainData,numMFs,mfType);
the more compact way becomes:
[A,B] = meshgrid(a,b);
trainData = [A(:) B(:) C];

Using bin counts as weights for random number selection

I have a set of data that I wish to approximate via random sampling in a non-parametric manner, e.g.:
eventl=
4
5
6
8
10
11
12
24
32
In order to accomplish this, I initially bin the data up to a certain value:
binsize = 5;
nbins = 20;
[bincounts,ind] = histc(eventl,1:binsize:binsize*nbins);
Then populate a matrix with all possible numbers covered by the bins which the approximation can choose:
sizes = transpose(1:binsize*nbins);
To use the bin counts as weights for selection i.e. bincount (1-5) = 2, thus the weight for choosing 1,2,3,4 or 5 = 2 whilst (16-20) = 0 so 16,17,18, 19 or 20 can never be chosen, I simply take the bincounts and replicate them across the bin size:
w = repelem(bincounts,binsize);
To then perform weighted number selection, I use:
[~,R] = histc(rand(1,1),cumsum([0;w(:)./sum(w)]));
R = sizes(R);
For some reason this approach is unable to approximate the data. It was my understanding that was sufficient sampling depth, the binned version of R would be identical to the binned version of eventl however there is significant variation and often data found in bins whose weights were 0.
Could anybody suggest a better method to do this or point out the error?
For a better method, I suggest randsample:
values = [1 2 3 4 5 6 7 8]; %# values from which you want to pick
numberOfElements = 1000; %# how many values you want to pick
weights = [2 2 2 2 2 1 1 1]; %# weights given to the values (1-5 are twice as likely as 6-8)
sample = randsample(values, numberOfElements, true, weights);
Note that even with 1000 samples, the distribution does not exactly correspond to the weights, so if you only pick 20 samples, the histogram may look rather different.

extract every n row in a matrix to another matrix in a loop

I'm a total beginner to matlab and I'm currently writing a script for extracting data from a thermographic video.
Firstly the video is cut in separate frames. The first frame is opened as a sample picture to define the coordinates of sampling points. The goal is then to select the rgb values of those defined coordinates from a set of frames and save them into a matrix.
Now I have a problem separating the matrix to n smaller matrices.
e.g I'm defining the number of points to be selected to n=2 , with a picture count of 31. Now it returns a matrix stating the rgb codes for 31 pictures, each at 2 points, in a 62x3 double matrix...
Now I want to extract the 1st, 3rd, 5th....etc... row to a new matrix...this should be done in a loop, according to the number of n points...e.g 5 points on each picture equals 5 matrices, containing values of 31 pictures....
this is an extract of my code to analyse the pictures, it returns the matrix 'values'
files = dir('*.jpg');
num_files = numel(files);
images = cell(1, num_files);
cal=imread(files(1).name);
n = input('number of selection points?: ');
imshow(cal);
[x,y] = ginput(n);
eval(get(1,'CloseRequestFcn'))
%# x = input('x-value?: '); manual x selection
%# y = input('y-value?: '); manual y selection
for k = 1:num_files
images{k} = imread(files(k).name);
end
matrix=cell2mat(images);
count=(0:size(matrix,1):size(matrix,1)*num_files);
for k = 1:num_files
a(k)= mat2cell(impixel(matrix,x+count(k),y));
end
values = cat(1,a{:})
Easy fix
Do you mean that if you have:
n = 2;
k = 2; % for example
matrix = [1 2 3;
4 5 6;
7 8 9;
8 7 6];
you want it to become
b{1} = [1 2 3;
7 8 9];
b{2} = [4 5 6;
8 7 6];
This can be easily done with:
for ii = 1:n
b{ii} = matrix(1:n:end,:);
end
Better fix
Of course it's also possible to just reshape your data matrix and use that instead of the smaller matrices: (continuing with my sample data ^^)
>> d=reshape(matrix',3,2,[]);
>> squeeze(d(:,1,:))
ans =
1 7
2 8
3 9
>> squeeze(d(:,2,:))
ans =
4 8
5 7
6 6
Good practice
Or, my preferred choice: save the data immediately in an easy to access way. Here I think it will be an matrix of size: [num_files x num_points x 3]
If you want all the first points:
rgb_data(:,1,:)
only the red channel of those points:
rgb_data(:,1,1)
and so on.
I think this is possible with this:
rgb_data = zeros(num_files, num_points, 3);
for kk = 1:num_files
rgb_data(kk,:,:) = impixel(images{kk},x+count(k),y);
end
But I don't understand the complete meaning of your code (eg: why matrix=cell2mat(images) ??? and then of course:
count=(0:size(matrix,1):size(matrix,1)*num_files);
is just count=0:num_files;
so I'm not sure what would come out of impixel(matrix,x+count(k),y) and I used images{k} :)