Connected components in Networkx disappeared after printing? - networkx

I created a graph G and add two nodes. Then I find the connected components of this graph and assign it to variable a.
import networkx as nx
G = nx.Graph()
G.add_node('a')
G.add_node('b')
a = nx.connected_components(G)
Then I print the variable a out:
>> print(list(a))
and I get the result as:
[set(['a']), set(['b'])]
After this, I print a again using the same prompt, but got nothing:
[]
I'm very curious about this. I print the connected components out once, and it seems that they disappeared?! Why?!

nx.connected_components creates something called a "generator". You can learn more about them here: Understanding Generators in Python
The big point is that a generator doesn't calculate something until you ask for it, and once it calculates it, it yields the thing and then it's gone from memory. So for example if you do
for component in nx.connected_components(G):
action(component)
It will find one component in G, and then the code will move to whatever action is being done. The first component it found is stored in component and the generator itself no longer remembers it. When the action is complete, the next step of the loop begins and the generator will do all the calculations to find the next component. This is great for preserving memory and prevents python from spending lots of time calculating things --- if you might leave the loop early it doesn't have to calculate the later components.
In your case, you did list(a). Here a is the generator. list needs all of the things in a. So they all get calculated and put into a list. Now there's nothing left in a. It is "exhausted". This is normal generator behavior. The list is gone because it didn't get saved with a name.
For what I think you want, you should say:
import networkx as nx
G = nx.Graph()
G.add_node('a')
G.add_node('b')
b = list(nx.connected_components(G))
Here the generator is exhausted, but the values it created are stored in the list b, which you can use repeatedly.

Related

A Grid of Clones

My goal is to build a 5x5 grid of images. In the following code, row, col and rowcol were created as variables local to the sprite, and newcol, newrow and cats are global. (By the way, is it possible to tell which variables are local and which are global? It's easy to forget or make mistakes.)
The result is a 5x1 grid only, as seen here.
I am unclear as to the order of execution of these statements. Does when I start as a clone get called before or after add_cat gets called the second time? My tentative conclusion is that it gets called afterwards, yet the clone's global variables seem to contain their values from beforehand instead.
When I attempted to debug it with ask and say and wait commands, the results varied wildly. Adding such pauses in some places fixed the problem completely, resulting in a 5x5 grid. In other places, they caused a 1x5 grid.
The main question is: How to fix this so that it produces a 5x5 grid?
Explanation
Unfortunately, the execution order in Scratch is a little bizarre. Whenever you edit a script (by adding or removing blocks, editing inputs, or dragging the entire script to a new location in the editor), it gets placed at the bottom of the list (so it runs last).
A good way to test this out is to create a blank project with the following scripts:
When you click the green flag, the sprite will either say "script one" or "script two", depending on which runs first. Try clicking and dragging one of the when green flag clicked blocks. The next time you click the green flag, the sprite will say whichever message corresponds to the script you just dragged.
This crazy order can make execution incredibly unpredictable, especially when using clones.
The solution
The only real solution is to write code that has a definite execution order built-in (rather than relying on the whims of the editor). For simpler scripts, this generally means utilizing the broadcast and wait block to run particular events in the necessary order.
For your specific project, I see two main solutions:
Procedural Solution
This is the most straightforward script, and it's probably what I would choose to go with:
(row and col are both sprite-only variables)
Because clones inherit all sprite-only variable values when they are created, each clone will be guaranteed to have the correct row and col when it is created.
Recursive Solution
This solution is a bit harder to understand than the first, so I would probably avoid it unless you're just looking for the novelty:

Add inports & outports to Simulink C Mex S-Function mask

I am trying to amend the example given here for creating a dynamic masked subsystem, where I want to dynamically change the number of imports and outports to an S-Function.
I have a very simple S-Function implemented in C (it's the timestwo example in the documentation) and for which I wish the user to be able to define the number of inputs and number of outputs in a mask. The intention is then, within the S Function, to manipulate the received input values and write to the output values. The S-Function will eventually do some quite complicated stuff and I need multiple instances of it in Simulink, hence why I want it defined in a library.
I have put the S-Function into a library and unlocked it by choosing Diagram->Unlock Library.
I have defined 2 variables, numInports and numOutports in the Parameters & Dialog pane of the mask editing window.
I then add the following to the Initialization pane:
blocks = find_system(gcb,...
'LookUnderMasks','on',...
'FollowLinks','on',...
'RegExp', 'on',...
'BlockType', 'port');
if ~isempty(blocks)
Simulink.SubSystem.deleteContents(gcb);
end
for n=0:(numInports - 1)
label = sprintf('/In%d', n);
add_block('built-in/Inport',[gcb,label]);
end
for n=0:(numOutports - 1)
label = sprintf('/Out%d', n);
add_block('built-in/Outport',[gcb,label]);
end
The intention is for the initialisation to delete all imports and outports when the parameters are changed, then recreate them. I then save the model within the library.
The find_system() command should find and delete all blocks with port in the type, as suggested here and here.
I have created a model that uses this library model S Function implementation. However, when I update the parameters, I get the error:
Error in 'MyModel/MyLibrarySFunction': Initialization commands cannot be evaluated. Caused by:
A new block named 'MyModel/MyLibrarySFunction/In0' cannot be added.
Can anybody please advise what is going wrong here?
EDIT:
The documentation for find_system() has all as a valid parameter value, not the on I used and which was in the documentation example, but this seems to have no effect when I change it. I added:
msg = sprintf('Num blocks: %d', numel(blocks));
disp(msg);
just after the find_system() call and get 0 for the number of blocks found, so I guess the problem may be that In0 is not deleted and hence I am trying to reinsert it.

Error using A3_4 (line 6) Not enough input arguments

This is my code:
%Activity 3.4 An object is thrown vertically with a speed vo reaches at
%height h at a time t.
function t = time(h,vo,g)
t = roots([0.5*g,-vo,h])
%Testing the function
test = time(100,50,9.81)
I've looked through different solutions but still can't figure out why I keep getting this error.
The error is happening on the line t = roots([0.5*g,-vo,h]).
Three comments:
You are probably pushing the Play button in the MATLAB editor. Don't do that. Forget that it even exists. Define h, vo and g in your Command Prompt, then do t = time(h, vo, g); in the Command Prompt. Again, do not push the Play button.
Make sure your working directory is set to where you defined the function time. MATLAB can't find this function that you defined. If you don't know how to do that, check out this from MathWorks: http://www.mathworks.com/help/matlab/ref/cd.html
Your error says it's trying to use a file called A3_4, yet your function is called time. In other words, It looks like you called your file A3_4.m yet it needs to be called time.m. Make sure it's in a file called time.m, then try again. That's one of MATLAB's cardinal rules. When you define a function, the function name and file name need to match.
Do all of those three steps in order, and you will be laughing and singing like these guys below:
(source: kym-cdn.com)

Simulink: What happens when subsystems are initialized?

I've been having a lot of trouble getting simulink's block callbacks to run, and the documentation is woefully inadequate and disorganized. It seems that I'm misunderstanding multiple points of how Simulink compiles models, but since StackOverflow dislikes multi-part questions, I will post them one at a time.
The situation: I have a library of components, each of which is a virtual subsystem whose parameters are defined through the masks. Block A has Parameter a which is sent to the base workspace using the 'assignin' command.
Next, the block B has a parameter b which is initialized in the Initialization tab of the mask.
Finally, the StartFcn callback of the block B runs a script which needs to reference both a and b to calculate c. In the script, I reference a simply as a because it's in the 'base' workspace, and I reference b using get_param(gcb,'b').
Now, this last command works when the parameter b is a user input (so it's a constant value). But in my case, this b is calculated using other parameters in the Initialization tab. And for some reason, in the script, this parameter is always zero.
I added a display within the block B to see what these values are, and they are clearly non-zero.
Can someone please explain why the script cannot seem to get the real value of the areas out of the block?
You can get the masked workspace variable using getworkspacevariable

Determining direct-feedthrough paths without compilation/execution

I am currently working on a tool written in M-Script that executes a set of checks on a given simulink model. This tool does not compile/execute the model, I'm using find_system and get_param to retrieve all the information I need in order to run the routines of my tool.
I've reached a point where I need to determine whether a certain block has direct-feedthrough or not. I am not entirely sure how to do this. Two possible solutions come to mind:
A property might store this information and might be accessible via get_param. After investigating this, I could not find any such property.
Some block types have direct-feedthrough (Sum, Logic, ...), some other do not (Unit Delay, Integrator), so I could use the block type to determine whether a block has direct-feedthrough or not. Since I'm not an experienced Simulink modeller, I'm not sure if its possible to tell whether a block has direct-feedthrough by solely looking at its block type. Also, this would require a lookup table including all Simulink block types. An impossible task, since additional block types might get added to Simulink via third party modules.
Any help or pointers to possible solutions are greatly appreciated.
after some further research...
There is an "official solution" by Matlab:
just download the linked m-file
It shows that my idea was not that bad ;)
and for the record, my idea:
I think it's doable quite easily. I cannot present you some code yet, but I'll see what I can do. My idea is the following:
programatically create a new model
Add a Constant source block and a Terminator
add the Block you want to get to know the direct feedthrough ability in the middle
add_lines
run the simulation and log the states, which will give you the xout variable in the workspace.
If there is direct feedthrough the vector is empty, otherwise not.
probably you need to include some try/catch error catching for special cases
This way you can analyse a block for direct feedthrough by just migrating it to another model, without compiling your actual main model. It's not the fastest solution, but I can not imagine that performance matters that much for you.
Here we go, this script works fine for my examples:
function feedthrough = hasfeedthrough( input )
% get block path
blockinfo = find_system('simulink','Name',input);
blockpath = blockinfo{1};
% create new system
new_system('feed');
open_system('feed');
% add test model elements
src = add_block('simulink/Sources/Constant','feed/Constant');
src_ports = get_param(src,'PortHandles');
src_out = src_ports.Outport;
dest = add_block('simulink/Sinks/To Workspace','feed/simout');
dest_ports = get_param(dest,'PortHandles');
dest_in = dest_ports.Inport;
test = add_block(blockpath,'feed/test');
test_ports = get_param(test,'PortHandles');
test_in = test_ports.Inport;
test_out = test_ports.Outport;
add_line('feed',src_out,test_in);
add_line('feed',test_out,dest_in);
% setup simulation
set_param('feed','StopTime','0.1');
set_param('feed','Solver','ode3');
set_param('feed','FixedStep','0.05');
set_param('feed','SaveState','on');
% run simulation and get states
sim('feed');
% if condition for blocks like state space
feedthrough = isempty(xout);
if ~feedthrough
a = simout.data;
if ~any(a == xout);
feedthrough = ~feedthrough;
end
end
delete system
close_system('feed',1)
delete('feed');
end
When enter for example 'Gain' it will return 1, when you enter 'Integrator' it will return 0.
Execution time on my ancient machine is 1.3sec, not that bad.
Things you probably still have to do:
add another parameter, to define whether the block is continuous or discrete time and set the solver accordingly.
test some "extraordinary" blocks, maybe it's not working for everything. Also I haven implemented anything which could deal with logic, but actually the constant is 1 so it should work as well.
Just try out everything, at least it's a good base for you to work on.
A famous exception is the StateSpace Block which can have direct feedthrough AND states. But there are not sooo much standard blocks with this "behaviour". If you also have to deal with third party blocks you could get into some trouble, I have to admit that.
possible solution for the state space: if one compares xout with yout than one can find another indicator for direct feedthrough: if there is, the vectors are not equal. If so, than they are equal. Just an example, but I can imagine that it is possible to find more general ways to test things like that.
besides the added simout block above one needs the condition:
% if condition for blocks like state space
feedthrough = isempty(xout);
if ~feedthrough
a = simout.data;
if ~any(a == xout);
feedthrough = ~feedthrough;
end
end
From the documentation:
Tip
To determine if a block has direct feedthrough:
Double-click the
block. The block parameter dialog box opens.
Click the Help button in
the block parameter dialog box. The block reference page opens.
Scroll
to the Characteristics section of the block reference page, which
lists whether or not that block has direct feedthrough.
I couldn't find a programmatic equivalent though...
Based on a similar approach to the one by #thewaywewalk, you could set up a temporary model that contains an algebraic loop, similar to,
(Note that you would replace the State-Space block with any block that you want to test.)
Then set the diagnostics to error out if there is an algebraic loop,
If an error occurs when the model is compiled
>> modelname([],[],[],'compile');
(and you should check that it is the Algebraic Loop error that has occured), then the block has direct feed though.
If no error occurs then the block does not have direct feed though.
At this point you would need to terminate the model using
>> modelname([],[],[],'term');
If the block has multiple inports or outprts then you'll need to iterate over all combinations of them.