I've been having a lot of trouble getting simulink's block callbacks to run, and the documentation is woefully inadequate and disorganized. It seems that I'm misunderstanding multiple points of how Simulink compiles models, but since StackOverflow dislikes multi-part questions, I will post them one at a time.
The situation: I have a library of components, each of which is a virtual subsystem whose parameters are defined through the masks. Block A has Parameter a which is sent to the base workspace using the 'assignin' command.
Next, the block B has a parameter b which is initialized in the Initialization tab of the mask.
Finally, the StartFcn callback of the block B runs a script which needs to reference both a and b to calculate c. In the script, I reference a simply as a because it's in the 'base' workspace, and I reference b using get_param(gcb,'b').
Now, this last command works when the parameter b is a user input (so it's a constant value). But in my case, this b is calculated using other parameters in the Initialization tab. And for some reason, in the script, this parameter is always zero.
I added a display within the block B to see what these values are, and they are clearly non-zero.
Can someone please explain why the script cannot seem to get the real value of the areas out of the block?
You can get the masked workspace variable using getworkspacevariable
Related
I am using Simulink to model a waste recycling plant out of a number of masked blocks that I created, representing sorting steps, buffers etc. Each module (that is, a masked block) has a failure probability, modeled using Discrete Events. If a failure event occurs, a triggered subsystem calls an Interpreted Matlab Function ("outside" of simulink). This function is supposed to set a parameter status of the masked block representing the module that failed as well as the upstream modules' status to 0 (because obviously, everything upstream has to stop as well or the material will just pile up).
`set_param(gcb, 'status', num2str(status));
PortConnectivity = get_param(gcb,'PortConnectivity');
sources = PortConnectivity.SrcBlock;`
Basically, this will be looped until I reach a block with no own Source Block.
This all works quite well, except for one problem: The gcb command gives me the block path to the last block I highlighted manually, and not to the block that called the Interpreted Matlab function. Is there any way to get the calling block's handle (which I would use with it's Parents parameter to access the Mask's status)? (A similar question has been asked here, with no results...)
I hope you get my problem - I'll be happy to elaborate if anything's unclear; I am not claiming to be a Simulink expert, so sorry for maybe using wrong terminology.
Ok, for everyone stumbling upon this:
For the mask that contains the caller of the Matlab Interpreted Function, in the mask editor I define a parameter 'this_block' (turn visibility off), that I initialize in the Initialisation pane using
parent = get_param(gcb,'Parent');
set_param(gcb, 'this_block','Parent')
Since this masked block (responsible for modelling the failure and its upstream communication) is itself used in another masked block also present in the library (responsible for modeling the module's behaviour), I also had to check "Allow library blocks to modify it's contents" in the mask editor Inititlization pane of the parent's mask. The parameter 'this_block' is then handed over as one of the input arguments of the called function (in my case, status_communication(u, this_block)).
I am trying to amend the example given here for creating a dynamic masked subsystem, where I want to dynamically change the number of imports and outports to an S-Function.
I have a very simple S-Function implemented in C (it's the timestwo example in the documentation) and for which I wish the user to be able to define the number of inputs and number of outputs in a mask. The intention is then, within the S Function, to manipulate the received input values and write to the output values. The S-Function will eventually do some quite complicated stuff and I need multiple instances of it in Simulink, hence why I want it defined in a library.
I have put the S-Function into a library and unlocked it by choosing Diagram->Unlock Library.
I have defined 2 variables, numInports and numOutports in the Parameters & Dialog pane of the mask editing window.
I then add the following to the Initialization pane:
blocks = find_system(gcb,...
'LookUnderMasks','on',...
'FollowLinks','on',...
'RegExp', 'on',...
'BlockType', 'port');
if ~isempty(blocks)
Simulink.SubSystem.deleteContents(gcb);
end
for n=0:(numInports - 1)
label = sprintf('/In%d', n);
add_block('built-in/Inport',[gcb,label]);
end
for n=0:(numOutports - 1)
label = sprintf('/Out%d', n);
add_block('built-in/Outport',[gcb,label]);
end
The intention is for the initialisation to delete all imports and outports when the parameters are changed, then recreate them. I then save the model within the library.
The find_system() command should find and delete all blocks with port in the type, as suggested here and here.
I have created a model that uses this library model S Function implementation. However, when I update the parameters, I get the error:
Error in 'MyModel/MyLibrarySFunction': Initialization commands cannot be evaluated. Caused by:
A new block named 'MyModel/MyLibrarySFunction/In0' cannot be added.
Can anybody please advise what is going wrong here?
EDIT:
The documentation for find_system() has all as a valid parameter value, not the on I used and which was in the documentation example, but this seems to have no effect when I change it. I added:
msg = sprintf('Num blocks: %d', numel(blocks));
disp(msg);
just after the find_system() call and get 0 for the number of blocks found, so I guess the problem may be that In0 is not deleted and hence I am trying to reinsert it.
Someone on /r/matlab asked me a really interesting question a few days ago related to a Flappy Bird clone submitted to the MATLAB FEX. The poster noticed that if you open the main .m file, stop it in the debugger on the first line, and run a whos(), you see a bunch of variables before they are explicitly defined by the function.
The first thing that I noticed in the editor was the syntax highlighting indicating the presence of nested functions. At a glance, it seems like the variables returned by the whos() are only those that will be defined at some point in the scope of the base function.
You can recreate this with a simpler example:
function testcode
asdf = 1;
function testing
ghfj = 2;
end
end
If you set a breakpoint on the first line and run a whos(), you get
Name Size Bytes Class Attributes
ans 0x0 0 (unassigned)
asdf 0x0 0 (unassigned)
I couldn't seem to find anything explaining this behavior in the documentation for nested functions or related topics. I am not a computer scientist and my programming knowledge is limited to MATLAB and a very small sprinkling of Python. Can anybody explain what is going on? Does it have something to do with how MATLAB compiles the code at run time?
The workspace of a function with nested function is protected. When the function is called, Matlab has to analyze the code to determine which variables are in scope at what part of the function. Remember, variables that are declared in the main function and that are used in a nested function are passed by reference, and can be modified within the nested function even if not explicitly declared as input or output.
To avoid messing up any of the nested functions, and possibly to help speed things up, Matlab does not allow assigning any additional variables to the workspace of that function. For example, if you stop the execution of the code at line 1, and then try assigning a value to a new variable klmn, Matlab will throw an error. This can be a bit frustrating for debugging, but you can always assign ans, fortunately.
I am currently working on a tool written in M-Script that executes a set of checks on a given simulink model. This tool does not compile/execute the model, I'm using find_system and get_param to retrieve all the information I need in order to run the routines of my tool.
I've reached a point where I need to determine whether a certain block has direct-feedthrough or not. I am not entirely sure how to do this. Two possible solutions come to mind:
A property might store this information and might be accessible via get_param. After investigating this, I could not find any such property.
Some block types have direct-feedthrough (Sum, Logic, ...), some other do not (Unit Delay, Integrator), so I could use the block type to determine whether a block has direct-feedthrough or not. Since I'm not an experienced Simulink modeller, I'm not sure if its possible to tell whether a block has direct-feedthrough by solely looking at its block type. Also, this would require a lookup table including all Simulink block types. An impossible task, since additional block types might get added to Simulink via third party modules.
Any help or pointers to possible solutions are greatly appreciated.
after some further research...
There is an "official solution" by Matlab:
just download the linked m-file
It shows that my idea was not that bad ;)
and for the record, my idea:
I think it's doable quite easily. I cannot present you some code yet, but I'll see what I can do. My idea is the following:
programatically create a new model
Add a Constant source block and a Terminator
add the Block you want to get to know the direct feedthrough ability in the middle
add_lines
run the simulation and log the states, which will give you the xout variable in the workspace.
If there is direct feedthrough the vector is empty, otherwise not.
probably you need to include some try/catch error catching for special cases
This way you can analyse a block for direct feedthrough by just migrating it to another model, without compiling your actual main model. It's not the fastest solution, but I can not imagine that performance matters that much for you.
Here we go, this script works fine for my examples:
function feedthrough = hasfeedthrough( input )
% get block path
blockinfo = find_system('simulink','Name',input);
blockpath = blockinfo{1};
% create new system
new_system('feed');
open_system('feed');
% add test model elements
src = add_block('simulink/Sources/Constant','feed/Constant');
src_ports = get_param(src,'PortHandles');
src_out = src_ports.Outport;
dest = add_block('simulink/Sinks/To Workspace','feed/simout');
dest_ports = get_param(dest,'PortHandles');
dest_in = dest_ports.Inport;
test = add_block(blockpath,'feed/test');
test_ports = get_param(test,'PortHandles');
test_in = test_ports.Inport;
test_out = test_ports.Outport;
add_line('feed',src_out,test_in);
add_line('feed',test_out,dest_in);
% setup simulation
set_param('feed','StopTime','0.1');
set_param('feed','Solver','ode3');
set_param('feed','FixedStep','0.05');
set_param('feed','SaveState','on');
% run simulation and get states
sim('feed');
% if condition for blocks like state space
feedthrough = isempty(xout);
if ~feedthrough
a = simout.data;
if ~any(a == xout);
feedthrough = ~feedthrough;
end
end
delete system
close_system('feed',1)
delete('feed');
end
When enter for example 'Gain' it will return 1, when you enter 'Integrator' it will return 0.
Execution time on my ancient machine is 1.3sec, not that bad.
Things you probably still have to do:
add another parameter, to define whether the block is continuous or discrete time and set the solver accordingly.
test some "extraordinary" blocks, maybe it's not working for everything. Also I haven implemented anything which could deal with logic, but actually the constant is 1 so it should work as well.
Just try out everything, at least it's a good base for you to work on.
A famous exception is the StateSpace Block which can have direct feedthrough AND states. But there are not sooo much standard blocks with this "behaviour". If you also have to deal with third party blocks you could get into some trouble, I have to admit that.
possible solution for the state space: if one compares xout with yout than one can find another indicator for direct feedthrough: if there is, the vectors are not equal. If so, than they are equal. Just an example, but I can imagine that it is possible to find more general ways to test things like that.
besides the added simout block above one needs the condition:
% if condition for blocks like state space
feedthrough = isempty(xout);
if ~feedthrough
a = simout.data;
if ~any(a == xout);
feedthrough = ~feedthrough;
end
end
From the documentation:
Tip
To determine if a block has direct feedthrough:
Double-click the
block. The block parameter dialog box opens.
Click the Help button in
the block parameter dialog box. The block reference page opens.
Scroll
to the Characteristics section of the block reference page, which
lists whether or not that block has direct feedthrough.
I couldn't find a programmatic equivalent though...
Based on a similar approach to the one by #thewaywewalk, you could set up a temporary model that contains an algebraic loop, similar to,
(Note that you would replace the State-Space block with any block that you want to test.)
Then set the diagnostics to error out if there is an algebraic loop,
If an error occurs when the model is compiled
>> modelname([],[],[],'compile');
(and you should check that it is the Algebraic Loop error that has occured), then the block has direct feed though.
If no error occurs then the block does not have direct feed though.
At this point you would need to terminate the model using
>> modelname([],[],[],'term');
If the block has multiple inports or outprts then you'll need to iterate over all combinations of them.
in order to simulate some processes I have a problem with getting a predefined working order of my self modeled blocks.
How can I be sure, that for example Block A must be finished before Block B and C start working?
The problem is, that some Blocks shall work after some others and some shall not. I must admit I have not much experience with Simulink in order of doing time-depending things (althought basic knowledge of simulink is available).
For instance this scenario shall be realised:
A -> B, C -> D, E, F
The main thing is, that all blocks A-F have no logic correlation to each other, they all do several things. My aim is to make B and C start working, after A has finished. And D/E/F after B AND C have finished.
In this case, the word "parallel" was the wrong word, this does not have to be calculated really parallely. Just making sure, that this complies with a predifined steady order.
Edit:
My new idea is to use the matlab workspace als buffer, so my block A can push its results to workspace (by the "to workspace" block). But now I have to make sure, that block B and C may read the results (with "From workspace") of A AFTER A pushed its information to workspace...how to do this?
Edit2:
Here's a screenshot which should make some thinks clearer:
As the documentation of "Sorted order" refers, the set up seems to be ok (including the subsystems timing). But unfortunately problem still exists. The variable "simin" is loaded from workspace, before it was written :( As you see, the display shows "1", which it shouldn't do. In the very first run of the simulation I get an exception, that the variable "simin" does not exist.
It would be nice, if you can help me with my issue.
Greets, poeschlorn
So in your example, if you have Block A connected with the same wire to both B and C, when Block A is finished, Block B and C will work in parallel.
EDIT:
I am using the same blocks as you are, but it works for me. I think you are over complicating things. The way you are setting block priorities is no different than how Simulink runs the blocks without them. Below you can see my setup and the output on both binary displays.
The error you see on the first run is due to Simulink not creating the variable until the first time step is being executed. When Simulink builds the simulation it sees that the variable used as input from the workspace is not created.
If the connection between the block are not enough to set the order, you can use block priorities.
A tip to test the execution order is to add an "embedded Matlab block" with a disp command displaying the name of the block.
It's not really clear what you're asking. When you say that Block A must be finished, do you mean the Output function? The way simulation works in Simulink is that the blocks are run serially, so Block B and C would never run until Block A finished it's Output function.
I don't know of any obvious way of running blocks B and C in parallel currently in Simulink.