In Swift OOP design, how do I arrange a commonly-used class? - swift

I am new to Swift and OOP. For example, I have a class that manages the system-wide configurations.
class system_conf {
init()
getValue1()
getValue2()
...
setValue1()
setValue2()
...
reloadValues()
activateX()
activeteY()
...
}
This class should have only one instance and many other classes will use it. What's the recommended way for this case?
Should I pass around this instance?
Should I consider to use Singleton?
Should I use static functions directly?
Should I create a global instance, so every other class can access it directly?
or?

It seems your class is a configuration class. If you intend to pass it to a bunch of classes, you should wonder if you need to write unit tests for them.
If so, assuming you are either using a singleton or static methods or a global var, take a moment to think about how you would mock this configuration class for each of your tests. It's not easy, is it?
If your class is a kind of mediator, a global var or static methods are fine (or any other alternative you suggested). However, in your case, it would be better to pass your object in any initializer/constructor of each class using it. Then, testing would definitely be easier. Also, passing it via an interface is even better: you can mock it super easily (mock up libraries mostly work with interfaces only).
So there is no unique answer to your question. It is just a matter of compromises and scaling. If your app is small, any of the method you listed above is perfectly fine. However, if you app tends to get bigger, a proxy solution would be better for maintainability and testability.
If you fancy reading, you should glance at this article from Misko Hevery, especially this chapter.

Related

What's the correct way of thinking C# protected accessor in swift?

In c# we have the protected accessor which allows class members to be visible on inherited clases but not for the rest.
In Swift this doesn't exist so I wonder what's a correct approach for something like this:
I want to have a variable (internal behavior) and and a public method using this variable on a base class. This variable will be used also on inherited clases.
Options I see
Forget about base class and implement variable and methods everywhere I need it. WRONG, duplicated code
Implement inheritance by composition. I'd create a class containing common methods and this will be used by composition instead of inheritance. LESS WRONG but still repeating code that could be avoided with inheritance
Implement inheritance and make variable internal on base class. WRONG since exposes things without any justification except allowing visibility on inherited clases.
Implementation Details for Base Class
I want to have a NSOperationQueue instance and and a public method to cancel queued operations. I add new operations to this queue from inherited classes.
In Swift the correct answer is almost always protocols and extensions. It is almost never inheritance. Sometimes Cocoa stands in our way, because there are classes in Cocoa more often than protocols, but the goal is almost always protocols and extensions. Subclassing is our last choice.
Your particular case is confusing because NSOperationQueue already has a public method to cancel queued operations (cancelAllOperations). If you want to protect the queue from outside access (prevent callers from using addOperation directly for instance), then you should put the queue inside another type (i.e. composition), and forward what you want to the queue. More details on the specific problem you're solving would allow us to help suggest other Swift-like solutions.
If in the end you need something that looks like protected or friend, the correct solution is private. Put your subclass or your friend in the same file with the target, and mark the private thing private. Alternately, put the things that need to work together in a framework, and mark the attribute internal. The Swift Blog provides a good explanation of why this is an intentional choice.

Any reason not use use a singleton "variable" in Swift?

For Sept 2015, here's exactly how you make a singleton in Swift:
public class Model
{
static let shared = Model()
// ( for ocd friends ... private init() {} )
func test()->Double { print("yo") }
}
then elsewhere...
blah blah
Model.shared.test()
No problem.
However. I add this little thing...
public let model = Model.shared
public class Model
{
static let shared = Model()
func test()->Double { print("yo") }
}
then, you can simply do the following project-wide:
blah blah
model.test()
Conventional idiom:
You see Model.shared.blah() everywhere in the code.
"My" idiom:
You see model.blah() everywhere in the code.
So, this results in everything looking pretty!
This then, is a "macro-like" idiom.
The only purpose of which is to make the code look pretty.
Simplifying appearances of ImportantSystem.SharedImportantSystem down to importantSystem. throughout the project.
Can anyone see any problems with this idiom?
Problems may be technical, stylistic, or any other category, so long as they are really deep.
As a random example, here's an "article in singletons in Swift" that happens to also suggest the idea: https://theswiftdev.com/swift-singleton-design-pattern/
Functionally, these are very similar, but I'd advise using the Model.shared syntax because that makes it absolutely clear, wherever you use it, that you're dealing with a singleton, whereas if you just have that model global floating out there, it's not clear what you're dealing with.
Also, with globals (esp with simple name like "model"), you risk of having some future class that has similarly named variables and accidentally reference the wrong one.
For a discussion about the general considerations regarding globals v singletons v other patterns, see Global Variables Are Bad which, despite the fairly leading title, presents a sober discussion, has some interesting links and presents alternatives.
By the way, for your "OCD friends" (within which I guess I must count myself, because I think it's best practice), not only would declare init to be private, but you'd probably declare the whole class to be final, to avoid subclassing (at which point it becomes ambiguous to what shared references).
There are a few things to look out for when using this approach:
The global variable
A global variable in itself is no big deal, but if you have quite some global variables, you might have trouble with autocompletion, because it will always suggest these global variables.
Another problem with global variables is that you could have another module in your application (written by you or otherwise) define the same global variable. This causes problems when using these 2 modules together. This can be solved by using a prefix, like the initials of your app.
Using global variables is generally considered bad practice.
The singleton pattern
A singleton is helpful when working with a controller, or a repository. It is once created, and it creates everything it depends on. There can be only one controller, and it opens only one connection to the database. This avoids a lot of trouble when working with resources or variables that need to be accessed from throughout your app.
There are downsides however, such as testability. When a class uses a singleton, that class' behaviour is now impacted by the singletons behaviour.
Another possible issue is thread safety. When accessing a singleton from different threads without locking, problems may arise that are difficult to debug.
Summary
You should watch out when defining global variables and working with singletons. With the appropriate care, not many problems should arise.
I can't see a single downside to this approach:
You can use different variables for different parts of the program (-> No namespace cramming if you don't like this I guess)
It's short, pretty, easy to use and makes sense when you read it. Model.shared.test() doesn't really make sense if you think about it, you just want to call test, why would I need to call shared when I just need a function.
It uses Swift's lazy global namespace: The class gets allocated and initialized when you use it the first time; if you never use it, it doesn't even get alloced/inited.
In general, setting aside the exact idiom under discussion, regarding the use of singletons:
Recall that, of course, instead of using static var shared = Model() as a kind of macro to a singleton, as suggested in this Q, you can just define let model = Model() which simply creates a normal global (unrelated to singletons).
With Swift singletons, there has been discussion that arguably you want to add a private init() {} to your class, so that it only gets initialized once (noting that init could still be called in the same file).
Of course in general, when considering use of a singleton, if you don't really need a state and the class instance itself, you can simply use static functions/properties instead. It's a common mistake to use a singleton (for say "calculation-like" functions) where all that is needed is a static method.

Scala singleton as instance of another class

I have a singleton object, that handles database stuff for my application, but I would like to have a similiar class to be used during testing, so that I can have many smaller test databases that dont interfere with each other. I could just drop the singleton and just create a new instance of the database class at startup, but that would mean I'd have to pass around this instance to everywhere where database actions are needed and I dont want that.
I could make a singleton that would work as an interface to a single instance of the database class. Someting like this:
object DB{
val db = new Database()
def set(a:Int,b:Int) = db.set(a,b)
def get(a:Int) = db.get(a)
}
This just feels sort of stupid and pointless, especially when the database class is fairly big and I'd have to do that to all of the methods. Is there a better way to solve this problem?
Thanks!
The best way to accomplish that would be with a cake pattern, but you would have to indeed extend all the methods in your DB class.
In order to do that I would follow this article: http://www.warski.org/blog/2014/02/using-scala-traits-as-modules-or-the-thin-cake-pattern/
After you have created the cake pattern, you just have to have one trait that implements the "other DB" used for tests only on test source code. And, of course, the trait the implements the "real DB" on the main source code.
Seems to me that your problem involves having multiple, different intances of a class, and being able to access them as a single object. For clarity, note that this things are kind of contradictory.
Hence, you need composition to have a reference to whatever actual instance you want to use. Then either you expose this instance directly (DB.instance.doSomething()) or take the effort of forwarding the API as you mention.
Seems to me you are not comfortable with either of these. If the syntax DB.instance bothers you, you can always put this instance in a package object and use it directly. You can also import DB._ to have direct access to the instance variable.

Are static classes and methods bad? Global variables frowned upon?

I have an application that has database connectivity and although there are obviously objects that correspond to data in my database, I find that all my data processing methods could be static as there is no real need for an instance of the object as my classes simply operate on the data and spit something out, no need to store anything outside the method's scope. If I can make a method or class static should I?
Also I use a utility singleton class for common (single instance) "global data". I want to have a good design, but are these frowned upon?
Let me give you an example of what I'm doing. I load some data from my database using a static method to place it into a global varaiable in my Singleton class (a list of a custom object)
So my singleton class has something like
List<MyCustomObject> SomeList
and my static class has
static void LoadData()
foreach(data in database something or other)
singletonClass.SomeList.Add()
So the code above might load in some records from the database into SomeList, where each item in SomeList is of type MyCustomObject, which contains a single record of information.
Is this good implementation? Is this how you would code it?
Then in my presentation layer I would make calls to another static class of methods to get data from the singleton class in to a format required.
It doesn't feel very OOPey. But I can't really think how to do it another way you do it.
Allow me to direct you toward an excellent article on this topic: Singletons are Pathological Liars.
The problem is that the need to call your LoadData() function isn't self-evident. Compare your situation to that described in the article and I think you'll see some parallels.
Statics and singletons are frowned upon somewhat. But only the same way as starting a sentence with “but” — bad when overused, but sometimes it's what works best.
In your example, why have separate classes, one a singleton and one static? A singleton is in many ways equivalent to a class with only static data and methods. If you already have a singleton, I'd say you should add the methods to load the data to it rather than to a separate class. A class with static methods would be more appropriate if, say, you have utility code common to all of your stored data types.
(Also, I wouldn't worry too much about what's OOPey and what's not. Overengineering in the blind service of OOP principles can be a serious problem, speaking as someone who's had to wade through the Eclipse code base …)
Singletons is one but static is another very big one.
OOP or not, static variables have many drawbacks but little coding convenience.
Can't determine exact allocation time, life span
Can't work well in multi-threaded
Future problem to program expansion
...

Pseudo-multiple-inheritance with extension methods on interfaces in C#?

Similar question but not quite the same thing
I was thinking that with extension methods in the same namespace as the interface you could get a similar effect to multiple inheritance in that you don't need to have duplicate code implementing the same interface the same way in 10 different classes.
What are some of the downsides of doing this? I think the pros are pretty obvious, it's the cons that usually come back to bite you later on.
One of the cons I see is that the extension methods can't be virtual, so you need to be sure that you actually do want them implemented the same way for every instance.
The problem that I see with building interface capability via extension methods is that you are no longer actually implementing the interface and so can't use the object as the interface type.
Say I have a method that takes an object of type IBar. If I implement the IBar interface on class Foo via extension methods, then Foo doesn't derive from IBar and can't be used interchangeably with it (Liskov Substitution principle). Sure, I get the behavior that I want added to Foo, but I lose the most important aspect of creating interfaces in the first place -- being able to define an abstract contract that can be implemented in a variety of ways by various classes so that dependent classes need not know about concrete implementations.
If I needed multiple inheritance (and so far I've lived without it) badly enough, I think I'd use composition instead to minimize the amount of code duplication.
A decent way to think about this is that instance methods are something done by the object, while extension methods are something done to the object. I am fairly certain the Framework Design Guidelines say you should implement an instance method whenever possible.
An interface declares "I care about using this functionality, but not how it is accomplished." That leaves implementers the freedom to choose the how. It decouples the intent, a public API, from the mechanism, a class with concrete code.
As this is the main benefit of interfaces, implementing them entirely as extension methods seems to defeat their purpose. Even IEnumerable<T> has an instance method.
Edit: Also, objects are meant to act on the data they contain. Extension methods can only see an object's public API (as they are just static methods); you would have to expose all of an object's state to make it work (an OO no-no).