What's the correct way of thinking C# protected accessor in swift? - swift

In c# we have the protected accessor which allows class members to be visible on inherited clases but not for the rest.
In Swift this doesn't exist so I wonder what's a correct approach for something like this:
I want to have a variable (internal behavior) and and a public method using this variable on a base class. This variable will be used also on inherited clases.
Options I see
Forget about base class and implement variable and methods everywhere I need it. WRONG, duplicated code
Implement inheritance by composition. I'd create a class containing common methods and this will be used by composition instead of inheritance. LESS WRONG but still repeating code that could be avoided with inheritance
Implement inheritance and make variable internal on base class. WRONG since exposes things without any justification except allowing visibility on inherited clases.
Implementation Details for Base Class
I want to have a NSOperationQueue instance and and a public method to cancel queued operations. I add new operations to this queue from inherited classes.

In Swift the correct answer is almost always protocols and extensions. It is almost never inheritance. Sometimes Cocoa stands in our way, because there are classes in Cocoa more often than protocols, but the goal is almost always protocols and extensions. Subclassing is our last choice.
Your particular case is confusing because NSOperationQueue already has a public method to cancel queued operations (cancelAllOperations). If you want to protect the queue from outside access (prevent callers from using addOperation directly for instance), then you should put the queue inside another type (i.e. composition), and forward what you want to the queue. More details on the specific problem you're solving would allow us to help suggest other Swift-like solutions.
If in the end you need something that looks like protected or friend, the correct solution is private. Put your subclass or your friend in the same file with the target, and mark the private thing private. Alternately, put the things that need to work together in a framework, and mark the attribute internal. The Swift Blog provides a good explanation of why this is an intentional choice.

Related

Swift: Constant's internal implementation

In swift, how is constants implemented?
I read this article, which says
In Swift, constants are generally implemented as (inlined) function calls.
I am not clear of this statement.
Does Swift use a special approach to make constants?
Could anyone explain?
Are you familiar with "getter" and "setter" methods from other languages, such as Java? If a variable is made public in a language like Java, it's exposed to other classes to access directly. In the future, if this variable has to be changed, there's no way to do so without changing all of the other classes dependent upon. With getter/setter methods, dummy implementations can be made that don't do anything besides read/write the value. In the case that a change needs to be made, the implementation of these methods can be changed without effecting the public API of the class.
Swift implements variables with "properties", which are like a backing private variable with public getter/setter methods that are automatically generated. In the future, you can replace a property with a computer property with a special getter/setter implementation, without effecting the public API of the class, just like before. The difference here is that you don't need to write all of the default getters/setters yourself.

Pseudo-multiple-inheritance with extension methods on interfaces in C#?

Similar question but not quite the same thing
I was thinking that with extension methods in the same namespace as the interface you could get a similar effect to multiple inheritance in that you don't need to have duplicate code implementing the same interface the same way in 10 different classes.
What are some of the downsides of doing this? I think the pros are pretty obvious, it's the cons that usually come back to bite you later on.
One of the cons I see is that the extension methods can't be virtual, so you need to be sure that you actually do want them implemented the same way for every instance.
The problem that I see with building interface capability via extension methods is that you are no longer actually implementing the interface and so can't use the object as the interface type.
Say I have a method that takes an object of type IBar. If I implement the IBar interface on class Foo via extension methods, then Foo doesn't derive from IBar and can't be used interchangeably with it (Liskov Substitution principle). Sure, I get the behavior that I want added to Foo, but I lose the most important aspect of creating interfaces in the first place -- being able to define an abstract contract that can be implemented in a variety of ways by various classes so that dependent classes need not know about concrete implementations.
If I needed multiple inheritance (and so far I've lived without it) badly enough, I think I'd use composition instead to minimize the amount of code duplication.
A decent way to think about this is that instance methods are something done by the object, while extension methods are something done to the object. I am fairly certain the Framework Design Guidelines say you should implement an instance method whenever possible.
An interface declares "I care about using this functionality, but not how it is accomplished." That leaves implementers the freedom to choose the how. It decouples the intent, a public API, from the mechanism, a class with concrete code.
As this is the main benefit of interfaces, implementing them entirely as extension methods seems to defeat their purpose. Even IEnumerable<T> has an instance method.
Edit: Also, objects are meant to act on the data they contain. Extension methods can only see an object's public API (as they are just static methods); you would have to expose all of an object's state to make it work (an OO no-no).

When the use of an extension method is a good practice? [duplicate]

This question already has answers here:
Closed 13 years ago.
Extension methods are really interesting for what they do, but I don't feel 100% confortable with the idea of creating a "class member" outside the class.
I prefer to avoid this practice as much as I can, but sometimes it looks better to use extension methods.
Which situations you think are good practices of usage for this feature?
I think that best place for extension methods is "helper" methods or "shortcuts" that make existing API easier and cleanier by providing default values to arguments of existing methods or hiding repeating chains of method calls.
Contrary to the common beliefs that you can "extend" classes for which you do not have access to the source code, you cannot. You have no access to private methods and objects, all you can do is to polish public API and bend it to your likings (not recommended).
They're great for interfaces (where you can add "composite" behaviour which only uses existing methods on the interface) - LINQ to Objects is the prime example of this.
They're also useful for creating fluent interfaces without impacting on the types that are being used. My favourite example is probably inappropriate for production code, but handy for unit tests:
DateTime birthday = 19.June(1976) + 8.Hours();
Basically anywhere that you don't want to or can't add behaviour to the type itself, but you want to make it easier to use the type, extension methods are worth considering. If you find yourself writing a bunch of static methods to do with a particular type, think about whether extension methods wouldn't make the calls to those methods look nicer.
When the class is not extensible and you don't have control over the source code. Or if it is extensible, but you prefere to be able to use the existing type instead of your own type. I would only do the latter if the extension doesn't change the character of the class, but merely supplies (IMO) missing functionality.
In my opinion, extension methods are useful to enhance the readability and thus maintainability of code. They seem to be be best on entities where either you have no access to the original class, or where the method breaks "Single Responsibility Principle" of the original class. An example of the latter we have here is DSLs. The DSL models are extended with extension methods are used to make T4 templating easier but no methods are added the model unless they are specifically related to the model.
The ideal use for them is when you have an interface that will be implemented in many places, so you don't want to put a huge burden on implementors, but you want the interface to be convenient to use from the caller's perspective as well.
So you put the "helpers" into a set of extension methods, leaving the interface itself nice and lean.
interface IZoomable
{
double ZoomLevel { get; set; }
}
public static void SetDefaultZoom(this IZoomable z)
{
z.ZoomLevel = 100;
}
Extension methods are a great way to add functionality to classes that you don't own (no source), are in the framework or that you don't want to inherit for whatever reason.
I like them, but you are right. They should be used judiciously.

What is an empty interface used for

I am looking at nServiceBus and came over this interface
namespace NServiceBus
{
public interface IMessage
{
}
}
What is the use of an empty interface?
Usually it's to signal usage of a class. You can implement IMessage to signal that your class is a message. Other code can then use reflection to see if your objects are meant to be used as messages and act accordingly.
This is something that was used in Java a lot before they had annotations. In .Net it's cleaner to use attributes for this.
#Stimpy77 Thanks! I hadn't thought of it that way.
I hope you'll allow me to rephrase your comment in a more general way.
Annotations and attributes have to be checked at runtime using reflection. Empty interfaces can be checked at compile-time using the type-system in the compiler. This brings no overhead at runtime at all so it is faster.
Also known as a Marker Interface:
http://en.wikipedia.org/wiki/Marker_interface_pattern
In java Serializable is the perfect example for this. It defines no methods but every class that "implements" it has to make sure, that it is really serializable and holds no reference to things that cannot be serialized, like database connections, open files etc.
In Java, empty interfaces were usually used for "tagging" classes - these days annotations would normally be used.
It's just a way of adding a bit of metadata to a class saying, "This class is suitable for <this> kind of use" even when no common members will be involved.
Normally it's similar to attributes. Using attributes is a preferred to empty interfaces (at least as much as FxCop is aware). However .NET itself uses some of these interfaces like IRequiresSessionState and IReadOnlySessionState. I think there is performance loss in metadata lookup when you use attributes that made them use interfaces instead.
An empty interface acts simply as a placeholder for a data type no better specified in its interface behaviour.
In Java, the mechanism of the interface extension represents a good example of use. For example, let's say that we've the following
interface one {}
interface two {}
interface three extends one, two {}
Interface three will inherit the behaviour of 'one' and 'two', and so
class four implements three { ... }
has to specify the two methods, being of type 'three'.
As you can see, from the above example, empty interface can be seen also as a point of multiple inheritance (not allowed in Java).
Hoping this helps to clarify with a further viewpoint.
They're called "Mark Interfaces" and are meant to signal instances of the marked classes.
For example... in C++ is a common practice to mark as "ICollectible" objects so they can be stored in generic non typed collections.
So like someone over says, they're to signal some object supported behavior, like ability to be collected, serialized, etc.
Been working with NServiceBus for the past year. While I wouldn't speak for Udi Dahan my understanding is that this interface is indeed used as a marker primarily.
Though I'd suggest you ask the man himself if he'd had thoughts of leaving this for future extension. My bet is no, as the mantra seems to be to keep messages very simple or at least practically platform agnostic.
Others answer well on the more general reasons for empty interfaces.
I'd say its used for "future" reference or if you want to share some objects, meaning you could have 10 classes each implementing this interface.
And have them sent to a function for work on them, but if the interface is empty, I'd say its just "pre"-work.
Empty interfaces are used to document that the classes that implement a given interface have a certain behaviour
For example in java the Cloneable interface in Java is an empty interface. When a class implements the Cloneable interface you know that you can call run the clone() on it.
Empty interfaces are used to mark the class, at run time type check can be performed using the interfaces.
For example
An application of marker interfaces from the Java programming language is the Serializable interface. A class implements this interface to indicate that its non-transient data members can be written to an ObjectOutputStream. The ObjectOutputStream private method writeObject() contains a series of instanceof tests to determine writeability, one of which looks for the Serializable interface. If any of these tests fails, the method throws a NotSerializableException.
An empty interface can be used to classify classes under a specific purpose. (Marker Interface)
Example : Database Entities
public interface IEntity {
}
public class Question implements IEntity {
// Implementation Goes Here
}
public class Answer implements IEntity {
// Implementation Goes Here
}
For Instance, If you will be using Generic Repository(ex. IEntityRepository), using generic constraints, you can prevent the classes that do not implement the IEntity interface from being sent by the developers.

Classes: Public vars or public functions to change local vars?

Exactly what the topic title says,
In which cases would you prefer using public functions to change local variables over just defining that variable as public and modifying it directly?
Don't expose the data members directly: using opaque accessors means you can change the implementation at a later date without changing the interface.
I should know. I take the short cut from time-to-time, and have had occasion to regret it.
Obviously if you want changing the variable to have some other effect on the object's state (like recalculating some other property of the object) you must use a mutator function.
If it's possible to set the variable to something that places the object in an invalid state, you should probably also use a mutator function. This way you can throw an exception (or return an error, or just ignore) if something illegal is about to happen. This does wonders for debugging.
But if some variables can be modified with mutator functions, and others are public, the programmer needs to keep track of which is which. This is a waste of time and effort so in some cases it's easiest to just use mutator functions for everything.
If you look at an object purely in term of service, you realize that exposing a variable is not a good way to expose those services.
The API must reflect what the object is all about (for it to achieve a high cohesiveness), and if you define a setValue(...), it is not so much because you need a way to -- today -- changes a variable, but because it makes sense for the object to expose this service.
So:
Don't provide accessors or mutator function to every single member of every single class you write. Only provide accessors/mutator functions if the accessors/mutator methods are a sensible and useful part of the class's interface (API).
Don't think of these methods as accessors or mutators. Instead, think of them as methods that access or mutate a certain abstract property of the object that happens to be represented by a single member today, but may be computed in a more complex manner tomorrow.
You should mention what language you are dealing with, since that will affect the answer.
Your first thought should be about the API to your class. If you want to keep that API stable (and you should!), then consider how you might change today's simple variable into a full-blown method later.
In many languages, you can't change a variable to a method without changing the calling code. C, C++, and Java fall into this category. Never use public variables in these languages, because you won't have any wiggle room later.
In Python, you can change a variable to a property without changing the callers, so you don't have to worry up front: use public variables.
C# I believe has properties that can let you change variables to methods transparently, but I am not sure.
If you want to change a variable inside a class, your best doing it through Properties.
Its not good practice to have variable's modified on the outside.
Think of future development too. You could put some logic behind a Property without changing the whole program.